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Abstract

During the operation of various machines and mechanisms, oscillatory movements may occur, excited by
a non-stationary friction characteristic. These oscillations appear either at the contact area of two parts or in the
zone located ahead of the moving part. In the contact area, a non-stationary friction force develops, leading to self-
excited oscillations of the contact surface and to the occurrence of parametric oscillations in the area ahead of the
active punch. At certain ratios of slip velocities and part movement speeds, self-excited and parametric motions
may appear or disappear, as well as intensify or weaken. These oscillations are one of the causes of uncontrolled
surface roughness (deformational), cracking, and spalling of interacting parts, as well as significant dynamic
components during the loading of actuating, drive, and power mechanisms. Frictional and parametric oscillations
in the surface layers of parts with deformation wave formation create residual plastic sinusoidal metal layers,
which are sheared off during the interaction of parts. Due to the dynamic nature of interaction during friction, the
forces acting in the contact plane (longitudinal) exceed the critical Euler force, which is a parametric load, and in
some cases lead to dangerous parametric resonance. The work defines the frequency range near the parametric
resonance, which is the area of dynamic instability ahead of the moving punch. The formulated and partially solved
problem considers frictional and parametric oscillations during the interaction of parts, which lead to the formation
of deformation waves, their partial or complete shearing, creating prerequisites for intensive wear and subsequent
destruction of parts.

Key words: dynamic loads, friction, wear, frictional oscillations, self-oscillations, beam-strip, parametric
oscillations, parametric resonance, primary instability zone, punch, elongated part, friction force, slip velocity,
surface layers.

Introduction

Dynamic effects on frictional surfaces cause both elastic and non-elastic deformations in the contact zone.
Elastic deformations are localized at discrete contact areas. In turn, impulse loads generate not only oscillations of
the tribological pair but also surface waves in the contacting parts. Under certain friction conditions, a contact
resonance mode arises, which abnormally increases the intensity of plastic deformation and damage accumulation.
This accelerates diffusion processes, material transfer, and intensifies structural-energy phenomena in the surface
layers of the material. Various processes occurring in the surface layers lead to the emergence of different types
of material destruction during wear, since in the pre-destruction stage adsorption, physical, chemical, structural,
and other transformations may occur. Under friction conditions, the influence of these processes is usually stronger
than, for example, in contact or bulk fatigue. The shape, size, and surface texture of wear particles, as
well as the degree of hardening/softening of the surface layers, are directly related to wear mechanisms and make
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it possible to draw certain conclusions about the nature and characteristics of deformation processes in the friction
zone, about structural changes in the near-surface layer of the material, and about wear mechanisms [1].

Modeling of friction and wear processes is an important tool across a wide range of engineering disciplines,
including contact mechanics, fracture and fatigue, structural dynamics, and others. In work [2] , systems of
classification of friction and wear processes and criteria for their identification are presented, covering the physical
processes of friction associated with the mechanics of deformable bodies.

In the present study, the influence of parametric and self-oscillatory processes arising from the interaction
of components under dynamic loading conditions on the durability of the surface layers of the material is examined.

Literature review

During various technological processes occurring in the contact zone of the parts of kinematic pairs,
oscillatory movements may take place, leading to local failures due to the manifestation of plastic and sometimes
brittle properties by the surface layers of the parts [3]. In some cases, these properties are caused by the non-
stationary friction characteristic between the surface layers of the interacting parts as a function of slip velocity
[4]. Such oscillations may intensify during machine operation and lead to the accumulation of surface fatigue in
the metal and to local brittle and plastic fracture of the surface layers [5, 6]. Such destruction can be mathematically
described, taking into account the components of continuum mechanics and dislocation theory [5]. Therefore, to
solve such a problem, in addition to the deformation wave components, it is necessary to introduce into the
equations of the surface layer terms that also describe brittle properties and include multi-cycle loading. For the
reliable inclusion of such components into the dynamic equations, additional experimental and theoretical studies
are required.

Purpose

The aim of the work is to study the conditions for the occurrence and stabilization of self-excited and
parametric processes under dynamic loading of surface layers that occur in the interaction areas of parts during
friction and wear when brittle and elastic-plastic properties are manifested in the surface layers.

Statement of the main material

Let us consider the mechanism of occurrence of frictional self-oscillations in the interaction zone of a punch
with another part, as well as parametric oscillations in the zone ahead of the punch (Fig. 1).
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Fig. 1. Interaction of the punch with a half-space

The coefficient (force) of friction between two contacting parts can be approximated by a cubic function of
slip velocity (Fig. 2). This friction characteristic has a decreasing section, which causes negative damping to appear
in the oscillatory system, leading to self-excited oscillations that grow until the relative slip velocity of the parts
reaches its critical value (Fig. 2).
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Fig. 2. Dependence of the coefficient (force) of friction on the slip velocity of parts
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The presence of a nonlinear component in the friction characteristic indicates that after the slip velocity
reaches its critical value, the influence of this component will increase, and the oscillation amplitudes will decrease.
Thus, friction is accompanied by a self-oscillatory process that promotes additional frictional resistance and
intensifies the fatigue wear of interacting surfaces.

Based on the conducted research, three problems of the theory of friction and wear concerning the rolls of
rolling mills in the process of rolling sheets during metal processing or other similar processes were formulated:

1. Friction and wear of machined surfaces under the action of tangential forces suddenly applied to the
outer layers of the machined part;

2. Friction and wear of machined surfaces under the action of periodic (impulse) forces applied to the outer
layers of parts;

3. Friction and wear of machined surfaces as a result of the action of tangential loading caused by non-
stationary friction between the forming tool and the part.

The formulated (and partially solved) problems are problems with phenomenological models for
representing the processes of friction and wear.

Based on these three problems, it is highly likely that the sliding friction forces at the contact area, the
resulting self-oscillations, and the parametric effects in the area in front of the punch are interrelated. Therefore,
to describe the relationship between the processes at the contact area and ahead of the punch, let us consider these
two adjacent sections on the beam-strip of the part’s surface layer.

Let us distinguish two calculation schemes: the first within the framework of the contact area of the parts,
where the tangential force T stretches the beam-strip of length 11, and the second—where the tangential force T is
applied to a beam-strip of length 1. at the extreme point A, where the beam-strip (/) is in the compression zone
(Fig. 1).

Considering the first calculation scheme, we can compose the equation of longitudinal displacements in the
contact area of two parts of length 1. If g(x, ) can be defined as a function of oscillatory (or periodic) nature, then
the variable y(x, f) can be considered as the longitudinal displacement of the beam-strip during its oscillations.

Then the equation of longitudinal oscillations of a beam-strip loaded with distributed tangential loading
along the Ox axis of the strip lying on an elastic foundation [4] takes the form:

92 92
y _EF 9%y B, +4 (1)
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where y = y(x,t) — longitudinal displacement of the beam-strip during its deformation and oscillations;
E_F — longitudinal stiffness of the beam-strip; m — distributed mass of the beam-strip; [ — stiffness coefficient of

the elastic foundation; g = bLl — intensity of the distributed load over the contact area of the surfaces; b — width of
1

the contact area; [; — length of the contact area; P — external vertical load on the part; f, — static friction coefficient;

a= W — linear coefficient of the friction characteristic; b = M
cr cr

characteristic; V., — critical relative velocity of the parts at which f = f,,;; f — friction coefficient according to
the cubic dependence on slip velocity [2]:

—nonlinear coefficient of the friction

3
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Vg — slip velocity of the parts.
Equation (1) is considered taking into account homogeneous boundary conditions:

Vlx=0 =0
» o @)
Oxly=0

Expressions (2) represent the boundary conditions in the area of the beam-strip under the punch. Separately
from conditions (2), we write the nonhomogeneous boundary condition (additional):
Y|x:l1 = &max- 3)
That is, at the right boundary of the contact area, we have the displacement value &,,,, (maximum).
Note that the value §,,,, is still undetermined
We take into account that the force T = fP. Then, considering the expression f(V,), and the coefficients
a, b we solve equation (2) formally with respect to the function y(x,t), and we consider this solution as
approximate:
2 2 _ 3
y(x,t)=—%-2%+%-g%+%-fo—a-g—}t]+b-(%) ] 4)
Then, into the right-hand side of (4) we substitute the approximate value y, (x,t), which we seek in the
form:

yi(x,t) =21, V()2 (t) = (CicosB,x + C,sinP,x) -ﬁ—zsinPot. (5)
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where C; = 0; C, = Em—a; — arbitrary constants determined using (5) for the first natural mode of
sin_|™F _B-ll
EcF
oscillations;

z;(t) — time-dependent component of the function y, () [5] (i = 1,2,3, ...).
For the first approximation z; (t) = Z—O sinPyt
0

v, — initial slip velocity of the parts; P, — natural frequency of oscillations of one of the parts.

Then:
_ Emax . mPZ—B. LYo s
v, (x, t) = .\/FZ—B sm/ wr X POSlnPOt. (6)
sin EcF -1y

After substituting expression (5) into equation (4) and neglecting the transient components, we write the

expression for the displacement &,

b -
Emax = brzl? [fO — &maxVoacosPyt + E?naxvgbCOSSPOt]' )

We take t = 0 then the displacement &, is determined from the cubic equation, which has three solutions,
according to Cardano's formula; one of them has the largest real root — this will be the displacement &,

Eanax - Emax( - + PP ) + Lo =0. (8)

bvd = mPbv§ bv§

The solution (8) has three real roots if D < 0, and one real root if D > 0. The discriminant is written as

D=l (2 + 28 )3. ©)

- 4b2v2 3bv¢ = 3mpPbvi

Thus, the maximum displacement of the beam-strip [; under the contact area during its deformation and
oscillations is determined, we will consider that during longitudinal deformation of the beam-strip, the length of
section [; increases to the value l; + §,,4,, and the length of section [, increases to the value 1, + &,0x> Emax 1S
used for the increase of segment [,, and for the development of a wave-shaped deformation of the strip ,. The
deformation of segmen [, will consist of n half-waves. Thus, in section [, the beam-strip becomes wavy, and the
height of the corrugations will be considered as deformation micro-roughness. To determine the height of the
corrugations of the deformed section [, it is necessary first to calculate the length and number of micro-waves of
section [,.

In order to determine the deflection arrow of section I, we assume that the beam-strip has lost its
longitudinal stability. Therefore, as follows from [4], the length of the half-wave of the rod is equal to:

_m_ _3,4501
A=_=m =, (10)

where a — number of half-waves of deformation of the section of the beam-strip of length m, that has lost
longitudinal stability. as follows from [6], the length of the half-waves of deformation of the rod can be found
through the modulus of elasticity of the surface and inner layers of the part, as well as the moment of inertia of the
beam-strip; I — moment of inertia of the beam-strip cross section; E — modulus of elasticity of the inner layers of
the part; E. — modulus of elasticity of the surface layers of the part.

Then the flexibility coefficient of the rod on an elastic foundation according to [6] is equal to:

r:£:£a:i.3/5, (11)
EI 2 21 4E.I

where: [ = [, — unknown length of the beam-strip; [ — stiffness of the elastic foundation of the beam-strip
due to the elasticity of the inner layers of the part.

The flexibility coefficient of the rod on an elastic foundation can be related to the length of section [, and
the number of half-waves n of the section when it loses its longitudinal stability, according to [6]:

L) 2
r=an (n+1)2, (12)

or, taking into account expression (11), we obtain:

L.3fi_“_4 4 2
o N —a" (n+ 1)~ (13)

Expression (13) is transformed into a quadratic equation:
nz(l— E)—an - £ o, (14)

2 4Bl 4Bl 4El
The solution of (14) has the form:
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The deformed part of the beam-strip, ahead of the active punch, takes a sinusoidal shape and shifts in the

direction of the punch movement in the form of a moving (deformation) wave of lengthl, with a speed v,.

The shape of the wave is established after the beam-strip loses longitudinal stability.

Turning to the beam-strip before the punch enters section [, we see that this section is loaded with a
tangential force T. The tangential force T stretches section [; of the beam-strip and compresses section [,. As a
result of the tangential force, section [, receives a longitudinal bend, and in some cases loses longitudinal stability.
The longitudinal bend of the beam-strip is described using the following equation for the surface layer in partial
derivatives [5]:

According to [3] v(x, t) = Yj—q z, (t) sin % — transverse deflection of the beam-strip during longitudinal

bending (for the case of hinged support of the beam-strip);

B — coefficient of restitution (stiffness) of the elastic foundation of the beam-strip due to the elasticity of
the inner layers of the part;

I — moment of inertia of the cross section of the beam-strip;

T(x,t) = Ty(x, t) = bL; [fo = EmaxacosPot + &4, v3bcos® Pyt — limit value of the tangential force of
1

the beam-strip.

Substituting expressions v(x, t) and T (x, t) into the differential equation [5], we obtain a set of differential
equations in simple derivatives:

7 + 0 [1 — oy cos Pyt + By cos® Pyt]z, = 0. (16)
where k = 1,2, 3, ... — simple integers;
2 it B m?k? P . . .
wor = E - (—4 +t———— fo) — square of the natural frequency of oscillations loaded with a
ml; m ml;  bly

constant value of tangential force;

oy, B — constant coefficients of the friction characteristic:

w?k? P Bmi2bl,

e = E br, Sma o bl BlAbL, + 2 k2PLES,
wk? P BmiZbl,

B = Tz b, el bl + pldbL, + mkPLES,

We denote the function @, (t), which represents the parametric load on the oscillatory system, from
equation (16):

@ (t) = Brcos®Pt — oy cosPt, (17)
if the condition [7] is satisfied:
Lkl 4 L (18)

Then we write equation (16) in the form:
Ze(t) + 0§ [1 + per )]z () = 0. (19)
If condition (18) is not satisfied, then the function @ (t) is determined according to [7] without the
transformation effect, through direct integration. According to [5], the generating solution of (19) is represented
in the form:
7 (t) = Ay cos ¥y (20)

where ¥, = wg,t + 0, — time variable; A, — amplitude of deformation waves for the k-th harmonic; 0, —
initial phase for the k-th harmonic.
Then, taking into account the generating solution, according to [5], we have:

A(8) = Beexp [~ (0)] ~ By [1 2, ()], 1)
where B, — constant determined from initial conditions; p, — constant parameter set within the range 0 <
K < 1, we take p, = 1,3 taking into account the value of By.

Next, using simple reasoning, we determine the condition under which parametric oscillations in the system
will not occur. We consider the expression in square brackets of (21); if it is set to zero, we obtain the
transcendental equation:

Bcos3Pt — a,cosPt +1 = 0. (22)

We solve (22) with respect to 11 = cosPt, obtaining real values of the variable 1, at which the functions
7, (t) will equal zero.
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We write instead of (22) the equation for the relative variable n:

-S4 g, (23)
Bk Bk
which has the solution:
3 1 1 a3 3 1 1 ak \3
1= G+ e G @
where = 1, 2, 3, ... — mode number for which zones of absence of oscillatory motions are established.

When considering parametric oscillations, it remains important to determine the frequency range in which
the unstable state of the systems develops, leading to parametric oscillations and, in some cases, to parametric
resonance.

As follows from [9], the critical state occurs when the parametric load equation takes the form of the
Mathieu function and, in magnitude, is equal to or exceeds the critical Euler force [9]. Since the second part of the
parametric load in the Hill form does not affect the development of parametric oscillations and resonance, when
determining the critical frequencies we focus on the solutions and results obtained in solving the Mathieu equation
[8].

Thus, after the transformations performed in [9], we note that the regions of dynamic instability are located
around the frequencies that are parametrically excited:

G*k = ZO;C—Ok (k = 11 21 31 )5 (25)

where 0, — natural frequency of the k-th mode of parametric oscillations during cutting; wg;, — natural
frequency of oscillations of the beam-strip for the mode with index k.
Thus, the main parametric resonance occurs when the frequency ratio is:

0, = 2wy, (26)

for k =1 (ifk = 2,3, 4, ... — then condition (25) applies).

It should be noted that under self-excited and parametric oscillations on the surface layers of parts,
deformation-wave micro-roughness appears, which can be immediately sheared off by the moving punch.
Therefore, deformation micro-roughness, even in the absence of parametric resonance and when operating in the
elastic region, are subject to continuous alternating displacements; that is, the surface layers of the parts are in a
state of multi-cycle fatigue loading. Moreover, the amplitudes of deformation wave oscillations in the surface
layers exceed the corresponding oscillation amplitudes of the subsurface layers. Such deformations promote the
separation of the outer layers of the parts from the inner layers.

The internal layers of the materials of the parts tolerate volumetric compression deformation well due to
their elastic-plastic properties. However, in the outer layers, due to their brittle properties, critical crack formation
and local destruction are observed, which leads to intensive wear of the outer layers of parts during frictional
interaction.

Conclusions

1. Under dynamic loading of interacting parts, the role of parametric and self-excited processes in the
development of multi-cycle stresses and deformations in the areas of beam-strips under the punch and ahead of
the punch increases significantly, which leads to the intensification of wear and failure of the contacting surfaces.

2. To study non-stationary processes in the outer layers of interacting parts, a calculation scheme is applied
in which the surface layers of the parts are represented as anisotropic plates on an elastic foundation and loaded
with a tangential force determined by a variable friction coefficient, which in magnitude can exceed the critical
Euler force.

3. The causes of the occurrence of dynamically unstable states of the beam-strip are identified, in which
violations of the integrity of the surface layers of the workpiece and the tool are possible due to the manifestation
of supercritical stresses and deformations in the material of the outer layers of the interacting parts.

4. The results of determining dangerous states of the surface layers of parts or workpieces under the action
of non-stationary loads in the initial moments of interaction, as well as at the moments of the end of the slip effect
or at the moments of speed equalization during oscillations, are obtained.

5. The third dynamic problem for the surface layers of the workpiece is formulated and solved. The layers
are represented in the form of a brittle beam-strip on an elastic foundation, loaded with a tangential force caused
by non-stationary friction in the contact zone of the parts (under the punch) and in the zone of interaction of the
punch edge and the beam-strip, which leads to crack formation and premature wear of kinematic pairs.

6. The practical significance of the studies lies in the fact that for operating mining, metallurgical, and
transport machines, the zones of unstable operation are calculated, where conditions may be obtained that do not
ensure the high operational quality of such machines.
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MauainoBebkuii FO. O. , Mikocsinuuk O. O., , Yunteas O. JI. , CkBopuos 0.0., Baacenkos /1. II., Curnuk
C. 0., Ouiitnuk C.}O. /IunamiuHi nporecu y MOBEPXHEBUX LIapax JeTaleil sK JpKepeso iX OaraTOLMKIIYHUX
pyHHYBaHb IIpH TEPTi 1 3HOLIYBaHHI

[Ipu poboti pi3HOMaHITHUX MalIMH 1 MEXaHI3MIB MOXYTb MAaTH MiClie TPOSBH PYyXiB KOJUBAJIHHOTO
XapakTepy, sKi 30yIKyIOTbCS 32 HECTaliOHApHOI XapaKTepUCTHKH TepTs. Lli komuBaHHA MaloTh Micie abo Ha
MalilaHYWKy KOHTaKTa JBOX [eTajei, abo B 30HI, po3TamioBaHili momepemy pyxomoi neram. Tak y 30HI
MalJaH4YMKy KOHTaKTa PO3BUBAIOTHCS HECTAIlIOHAPHA CHJIA TEPTS, SKa IIPUBOIUTH 10 aBTOKOINBAaHb MaIaHIUKY
KOHTAKTy, a TAaKOK 10 BUHUKHCHHS MTApaMETPUYHHUX KOJHMBAHb y 30HI MOMEpeNy MIF0UOro MITaMITy. 3a IIEBHOMY
CHIBBIZHOIIECHHIO IIBUAKOCTEH MPOCIW3aHHSA Ta I[IBHAKOCTEH IIEPEMIIIEHHS IeTaield, aBTOKOJIMBAIBHI 1
MapaMeTPUYHI PyXH MOXYTb NPOSBUTHCS, a00 3HUKHYTH, a TAKOXK MOCHIIUTUCh, 9N TocaaduTuck. L1i konuBaHHA
€ OJIHIEI0 3 NMPUYMH BUHHUKHEHHS HEPETJIAMEHTOBAaHMX IIOPCTKOCTEH (nedopMariifHux), TpillMHyBaTocTed i
JyILIEHHS JeTaled, IO B3aEMOJIIOTh, a TAaKOXX 3HAYHUX JUHAMIYHHMX CKJIQJOBHX Il Yac HaBaHTAKECHHS
BUKOHABYMX, IIPUBOJIHHIX Ta CUJIOBUX MeXaHi3MiB. DpHKLilHI Ta HapaMeTPUYHI KOJIMBAHHS B TOBEPXHEBUX IIapax
Jeraneil 3 nedopManiiHUM XBHJICYTBOPEHHSAM (OPMY€E 3JIMIIKOBI IIACTHYHI CHHYCOiJajbHI HaIlapyBaHHSI
MeTaiy, sIKi 3pi3aroThCsl MiJ Yac B3aeMofil petaneld. Uepes MUHAMIUYHMK XapakTep B3aeMojil aeTajed mia vac
TEPTsl, 3yCHILIS, IO AiIOTh HA IUIONIMHI KOHTAKTY (TI03/I0BXKHI) IEPEBUIYIOTh KpUTHUHE 3ycriuisl Eiinepa, sike €
MapaMeTpUYHIM HaBaHTAKEHHAM, y PSIi BUMIAKIB IPUBOIUTE 10 HEOE3METHOTO APAMETPHIHOTO PE30HAHCY. Y
poOoTi BU3HaUeHa 00IaCcTh 9acTOT MOOIN3Y MapaMeTPUIHOTO pe3oHaHcy. Lle € ob6macTh AMHAMIYHOT HECTIHKOCTI
ToTrepely PyXOMOTO INTaMITy. Y TIOCTaBJIEHIH 1 YacTKOBO BHWpIIIeHiH 3amadi po3msiHyTI (QpuKIiiiHi Ta
IapaMeTpUYHi KOJHMBAaHHA TIPH B3a€MOJil JIeTalel, sIKi BeAyTh MO YTBOPEHHS nedopMamiiHMX XBHIb, IiX
YaCcTKOBOTO, UM MTOBHOTO 3pi3aHHS, IO YTBOPIOE MEPEIYMOBHU 10 IHTEHCHBHOTO 3HOUTYBaHHS, Ta IOCHIIyIOY0OTO
pyHHYBaHHS AeTancil.

Kirwu4oBi cjioBa: 1uHaMiuHi HABAaHTAXKCHHS, TEPTSI, 3HOC, GPUKIINHHI KOJHUBAHHS, aBTOKOJHUBAHHs, OaiKa-
CMY’)KKa, IapaMeTpU4Hi KOJMBAaHHsI, NapaMeTPUYHUN PE30HAHC, TOJIOBHA 30HAa HECTIMKOCTI, MITaMII, MPOTIKHA
JIeTallb, CUJIa TEPT, IBUAKICTh IPOCIU3aHHS, TIOBEPXHEBI LIAPH.



