
 

Copyright © 2025. Y. О. Malinovskyi, O.O. Mikosianchyk, O. D. Uchytel, O. О. Skvortsov, D. P. Vlasenkov, S. О. Sytnyk, S. Y. 

Oliinyk. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted 

use, distribution, and reproduction in any medium, provided the original work is properly cited. 
 

 

 

ISSN 2079-1372  Problems of Tribology, V. 30, No 3/117-2025, 41-48 
 

Problems of Tribology 
Website: http://tribology.khnu.km.ua/index.php/ProbTrib 

E-mail: tribosenator@gmail.com 
 

DOI:  https://doi.org/10.31891/2079-1372-2025-117-3-41-48 

 

 

Dynamic processes in surface layers of parts as a source of their 

multicycle failure under friction and wear 
 

Y. О. Malinovskyi10000-0001-5980-0908, O.O. Mikosianchyk20000-0002-2438-1333, O. D. Uchytel30000-0001-6241-1786, 

O. О. Skvortsov20009-0008-8778-6400, D. P. Vlasenkov10009-0008-4202-1885, S. О. Sytnyk1, S. Y. Oliinyk40000-0002-6169-8874 

1Kryvyi Rih professional college of State University «Kyiv Aviation Institute», Ukraine 
2State University «Kyiv Aviation Institute», Ukraine 

3State University of Economics and Technology, Ukraine 
4Krivyi Rih National University, Ukraine 

E-mail: oksana.mikos@ukr.net  
 

Received: 05 July  2025: Revised 30 July  2025: Accept:  15 August 2025 
 

 

Abstract 

 

During the operation of various machines and mechanisms, oscillatory movements may occur, excited by 

a non-stationary friction characteristic. These oscillations appear either at the contact area of two parts or in the 

zone located ahead of the moving part. In the contact area, a non-stationary friction force develops, leading to self-

excited oscillations of the contact surface and to the occurrence of parametric oscillations in the area ahead of the 

active punch. At certain ratios of slip velocities and part movement speeds, self-excited and parametric motions 

may appear or disappear, as well as intensify or weaken. These oscillations are one of the causes of uncontrolled 

surface roughness (deformational), cracking, and spalling of interacting parts, as well as significant dynamic 

components during the loading of actuating, drive, and power mechanisms. Frictional and parametric oscillations 

in the surface layers of parts with deformation wave formation create residual plastic sinusoidal metal layers, 

which are sheared off during the interaction of parts. Due to the dynamic nature of interaction during friction, the 

forces acting in the contact plane (longitudinal) exceed the critical Euler force, which is a parametric load, and in 

some cases lead to dangerous parametric resonance. The work defines the frequency range near the parametric 

resonance, which is the area of dynamic instability ahead of the moving punch. The formulated and partially solved 

problem considers frictional and parametric oscillations during the interaction of parts, which lead to the formation 

of deformation waves, their partial or complete shearing, creating prerequisites for intensive wear and subsequent 

destruction of parts. 

 

Key words: dynamic loads, friction, wear, frictional oscillations, self-oscillations, beam-strip, parametric 

oscillations, parametric resonance, primary instability zone, punch, elongated part, friction force, slip velocity, 

surface layers. 

 

Introduction 

 

Dynamic effects on frictional surfaces cause both elastic and non-elastic deformations in the contact zone. 

Elastic deformations are localized at discrete contact areas. In turn, impulse loads generate not only oscillations of 

the tribological pair but also surface waves in the contacting parts. Under certain friction conditions, a contact 

resonance mode arises, which abnormally increases the intensity of plastic deformation and damage accumulation. 

This accelerates diffusion processes, material transfer, and intensifies structural-energy phenomena in the surface 

layers of the material. Various processes occurring in the surface layers lead to the emergence of different types 

of material destruction during wear, since in the pre-destruction stage adsorption, physical, chemical, structural, 

and other transformations may occur. Under friction conditions, the influence of these processes is usually stronger 

than, for example, in contact or bulk fatigue. The shape, size, and surface texture of wear particles, as 
well as the degree of hardening/softening of the surface layers, are directly related to wear mechanisms and make 
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it possible to draw certain conclusions about the nature and characteristics of deformation processes in the friction 

zone, about structural changes in the near-surface layer of the material, and about wear mechanisms [1].  

Modeling of friction and wear processes is an important tool across a wide range of engineering disciplines, 

including contact mechanics, fracture and fatigue, structural dynamics, and others. In work [2] , systems of 

classification of friction and wear processes and criteria for their identification are presented, covering the physical 

processes of friction associated with the mechanics of deformable bodies. 

In the present study, the influence of parametric and self-oscillatory processes arising from the interaction 

of components under dynamic loading conditions on the durability of the surface layers of the material is examined. 

 

Literature review 

 

During various technological processes occurring in the contact zone of the parts of kinematic pairs, 

oscillatory movements may take place, leading to local failures due to the manifestation of plastic and sometimes 

brittle properties by the surface layers of the parts [3]. In some cases, these properties are caused by the non-

stationary friction characteristic between the surface layers of the interacting parts as a function of slip velocity 

[4]. Such oscillations may intensify during machine operation and lead to the accumulation of surface fatigue in 

the metal and to local brittle and plastic fracture of the surface layers [5, 6]. Such destruction can be mathematically 

described, taking into account the components of continuum mechanics and dislocation theory [5]. Therefore, to 

solve such a problem, in addition to the deformation wave components, it is necessary to introduce into the 

equations of the surface layer terms that also describe brittle properties and include multi-cycle loading. For the 

reliable inclusion of such components into the dynamic equations, additional experimental and theoretical studies 

are required. 

 

Purpose  

 

The aim of the work is to study the conditions for the occurrence and stabilization of self-excited and 

parametric processes under dynamic loading of surface layers that occur in the interaction areas of parts during 

friction and wear when brittle and elastic-plastic properties are manifested in the surface layers. 

 

Statement of the main material 

 

Let us consider the mechanism of occurrence of frictional self-oscillations in the interaction zone of a punch 

with another part, as well as parametric oscillations in the zone ahead of the punch (Fig. 1). 

 
Fig. 1. Interaction of the punch with a half-space 

 

The coefficient (force) of friction between two contacting parts can be approximated by a cubic function of 

slip velocity (Fig. 2). This friction characteristic has a decreasing section, which causes negative damping to appear 

in the oscillatory system, leading to self-excited oscillations that grow until the relative slip velocity of the parts 

reaches its critical value (Fig. 2). 

 

 
Fig. 2. Dependence of the coefficient (force) of friction on the slip velocity of parts 
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The presence of a nonlinear component in the friction characteristic indicates that after the slip velocity 

reaches its critical value, the influence of this component will increase, and the oscillation amplitudes will decrease. 

Thus, friction is accompanied by a self-oscillatory process that promotes additional frictional resistance and 

intensifies the fatigue wear of interacting surfaces. 

Based on the conducted research, three problems of the theory of friction and wear concerning the rolls of 

rolling mills in the process of rolling sheets during metal processing or other similar processes were formulated: 

1. Friction and wear of machined surfaces under the action of tangential forces suddenly applied to the 

outer layers of the machined part; 

2. Friction and wear of machined surfaces under the action of periodic (impulse) forces applied to the outer 

layers of parts; 

3. Friction and wear of machined surfaces as a result of the action of tangential loading caused by non-

stationary friction between the forming tool and the part. 

The formulated (and partially solved) problems are problems with phenomenological models for 

representing the processes of friction and wear. 

Based on these three problems, it is highly likely that the sliding friction forces at the contact area, the 

resulting self-oscillations, and the parametric effects in the area in front of the punch are interrelated. Therefore, 

to describe the relationship between the processes at the contact area and ahead of the punch, let us consider these 

two adjacent sections on the beam-strip of the part’s surface layer. 

Let us distinguish two calculation schemes: the first within the framework of the contact area of the parts, 

where the tangential force T stretches the beam-strip of length l₁, and the second—where the tangential force T is 

applied to a beam-strip of length l₂ at the extreme point A, where the beam-strip (l₂) is in the compression zone 

(Fig. 1). 

Considering the first calculation scheme, we can compose the equation of longitudinal displacements in the 

contact area of two parts of length l₁. If q(x, t) can be defined as a function of oscillatory (or periodic) nature, then 

the variable y(x, t) can be considered as the longitudinal displacement of the beam-strip during its oscillations. 

Then the equation of longitudinal oscillations of a beam-strip loaded with distributed tangential loading 

along the Ox axis of the strip lying on an elastic foundation [4] takes the form: 

 

 
𝜕2𝑦

𝜕𝑡2 =
𝐸𝑐𝐹

𝑚
∙

𝜕2𝑦

𝜕𝑥2 −
β

𝑚
∙ 𝑦 +

𝑞

𝑚
,                                                    (1) 

 

where 𝑦 = 𝑦(𝑥, 𝑡) – longitudinal displacement of the beam-strip during its deformation and oscillations; 

𝐸𝑐𝐹 – longitudinal stiffness of the beam-strip; 𝑚 – distributed mass of the beam-strip; β – stiffness coefficient of 

the elastic foundation; 𝑞 =
𝑇

𝑏𝑙1
 – intensity of the distributed load over the contact area of the surfaces; 𝑏 – width of 

the contact area; 𝑙1 – length of the contact area; 𝑃 – external vertical load on the part; 𝑓0 – static friction coefficient; 

𝑎 =
3(𝑓0−𝑓𝑚𝑖𝑛)

2𝑉𝑐𝑟
 – linear coefficient of the friction characteristic; 𝑏̅ =

(𝑓0−𝑓𝑚𝑖𝑛)

2𝑉𝑐𝑟
2  – nonlinear coefficient of the friction 

characteristic; 𝑉𝑐𝑟  – critical relative velocity of the parts at which 𝑓 = 𝑓𝑚𝑖𝑛; 𝑓 – friction coefficient according to 

the cubic dependence on slip velocity [2]: 

 

𝑓 = 𝑓0 −
3

2
∙ (𝑓0 − 𝑓𝑚𝑖𝑛) ∙

𝑉ск

𝑉кр

+
1

2
∙ (𝑓0 − 𝑓𝑚𝑖𝑛) ∙ (

𝑉𝑠𝑙

𝑉𝑐𝑟

)
3

 

𝑉𝑠𝑙 – slip velocity of the parts. 

Equation (1) is considered taking into account homogeneous boundary conditions: 

 {
𝑦|𝑥=0 = 0

𝜕𝑦

𝜕𝑥
|

𝑥=0
= 0

.                                                                (2) 

Expressions (2) represent the boundary conditions in the area of the beam-strip under the punch. Separately 

from conditions (2), we write the nonhomogeneous boundary condition (additional): 

 𝑦|𝑥=𝑙1
= ξ𝑚𝑎𝑥.                                                               (3) 

That is, at the right boundary of the contact area, we have the displacement value ξ𝑚𝑎𝑥 (maximum). 

Note that the value ξ𝑚𝑎𝑥 is still undetermined 

We take into account that the force 𝑇 = 𝑓𝑃. Then, considering the expression 𝑓(𝑉ск), and the coefficients 

𝑎, 𝑏̅ we solve equation (2) formally with respect to the function 𝑦(𝑥, 𝑡), and we consider this solution as 

approximate: 

 𝑦(𝑥, 𝑡) = −
𝑚

β
∙

𝜕2𝑦

𝜕𝑡2 +
𝐸𝑐𝐹

β
∙

𝜕2𝑦

𝜕𝑥2 +
𝑚𝑃

𝑏𝑙1β
∙ [𝑓0 − 𝑎 ∙

𝜕𝑦

𝜕𝑡
+ 𝑏̅ ∙ (

𝜕𝑦

𝜕𝑡
)

3

].                   (4) 

Then, into the right-hand side of (4) we substitute the approximate value 𝑦1(𝑥, 𝑡), which we seek in the 

form: 

 𝑦1(𝑥, 𝑡) = ∑ 𝑌1(𝑥)𝑧1(𝑡)𝑛
𝑖=1 = (𝐶1𝑐𝑜𝑠𝑃𝑛𝑥 + 𝐶2𝑠𝑖𝑛𝑃𝑛𝑥) ∙

𝑣0

𝑃0
𝑠𝑖𝑛𝑃0𝑡.                       (5) 
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where 𝐶1 = 0; 𝐶2 =
ξ𝑚𝑎𝑥.

𝑠𝑖𝑛√
𝑚𝑃2−β

𝐸𝑐𝐹
∙𝑙1

 – arbitrary constants determined using (5) for the first natural mode of 

oscillations; 

𝑧𝑖(𝑡) – time-dependent component of the function 𝑦1(𝑡) [5] (𝑖 = 1, 2, 3, …). 

For the first approximation 𝑧1(𝑡) =
𝑣0

𝑃0
𝑠𝑖𝑛𝑃0𝑡 

𝑣0 – initial slip velocity of the parts; 𝑃0 – natural frequency of oscillations of one of the parts. 

Then: 

 𝑦1(𝑥, 𝑡) =
ξ𝑚𝑎𝑥

𝑠𝑖𝑛√
𝑚𝑃2−β

𝐸𝑐𝐹
∙𝑙1

𝑠𝑖𝑛√
𝑚𝑃2−β

𝐸𝑐𝐹
∙ 𝑥 ∙

𝑣0

𝑃0
𝑠𝑖𝑛𝑃0𝑡.                                           (6) 

 

After substituting expression (5) into equation (4) and neglecting the transient components, we write the 

expression for the displacement ξ𝑚𝑎𝑥 

 ξ𝑚𝑎𝑥 =
𝑚𝑃

𝑏𝑙1β
∙ [𝑓0 − ξ𝑚𝑎𝑥𝑣0𝑎𝑐𝑜𝑠𝑃0𝑡 + ξ𝑚𝑎𝑥

3 𝑣0
3𝑏̅𝑐𝑜𝑠3𝑃0𝑡].                            (7) 

We take 𝑡 = 0 then the displacement ξ𝑚𝑎𝑥 is determined from the cubic equation, which has three solutions, 

according to Cardano's formula; one of them has the largest real root – this will be the displacement ξ𝑚𝑎𝑥 

 ξ𝑚𝑎𝑥
3 − ξ𝑚𝑎𝑥 (

𝑎

𝑏̅𝑣0
2 +

𝑏𝑙1β

𝑚𝑃𝑏̅𝑣0
3) +

𝑓0

𝑏̅𝑣0
3 = 0.                                         (8) 

 

The solution (8) has three real roots if 𝐷 < 0, and one real root if 𝐷 > 0. The discriminant is written as 

 

 𝐷 =
𝑓0

2

4𝑏̅2𝑣0
2 + (

𝑎

3𝑏̅𝑣0
2 +

𝑏𝑙1β

3𝑚𝑃𝑏̅𝑣0
2)

3

.                                                    (9) 

 

Thus, the maximum displacement of the beam-strip 𝑙1 under the contact area during its deformation and 

oscillations is determined, we will consider that during longitudinal deformation of the beam-strip, the length of 

section 𝑙1 increases to the value 𝑙1 + ξ𝑚𝑎𝑥, and the length of section 𝑙2 increases to the value 𝑙2 +  ξ𝑚𝑎𝑥, ξ𝑚𝑎𝑥 is 

used for the increase of segment 𝑙2, and for the development of a wave-shaped deformation of the strip 𝑙2. The 

deformation of segmen 𝑙2 will consist of 𝑛 half-waves. Thus, in section 𝑙2 the beam-strip becomes wavy, and the 

height of the corrugations will be considered as deformation micro-roughness.  To determine the height of the 

corrugations of the deformed section 𝑙2 it is necessary first to calculate the length and number of micro-waves of 

section 𝑙2. 

In order to determine the deflection arrow of section 𝑙2 we assume that the beam-strip has lost its 

longitudinal stability. Therefore, as follows from [4], the length of the half-wave of the rod is equal to: 

 λ =
π

α
= π ∙ √

4𝐸𝑐𝐼

𝐸

3
,                                                       (10) 

where α – number of half-waves of deformation of the section of the beam-strip of length π, that has lost 

longitudinal stability. as follows from [6], the length of the half-waves of deformation of the rod can be found 

through the modulus of elasticity of the surface and inner layers of the part, as well as the moment of inertia of the 

beam-strip; 𝐼 – moment of inertia of the beam-strip cross section; 𝐸 – modulus of elasticity of the inner layers of 

the part; 𝐸𝑐 – modulus of elasticity of the surface layers of the part. 

Then the flexibility coefficient of the rod on an elastic foundation according to [6] is equal to: 

 

 𝑟 =
β

𝐸𝐼
=

𝐸

2
α =

1

2𝑙
∙ √

𝐸

4𝐸𝑐𝐼

3
,                                                            (11) 

 

where: 𝑙 = 𝑙2 – unknown length of the beam-strip; β – stiffness of the elastic foundation of the beam-strip 

due to the elasticity of the inner layers of the part. 

The flexibility coefficient of the rod on an elastic foundation can be related to the length of section 𝑙2 and 

the number of half-waves 𝑛 of the section when it loses its longitudinal stability, according to [6]: 

 𝑟 =
π4

𝑙4 𝑛4(𝑛 + 1)2,                                                        (12) 

or, taking into account expression (11), we obtain: 

 

 
1

2𝑙2
∙ √

𝐸

4𝐸𝑐𝐼

3
=

π4

𝑙2
4 𝑛4(𝑛 + 1)2.                                                  (13) 

 

Expression (13) is transformed into a quadratic equation: 

 𝑛2 (
1

2
−

𝐸

4𝐸𝑐𝐼
) − 2𝑛

𝐸

4𝐸𝑐𝐼
−

𝐸

4𝐸𝑐𝐼
= 0.                                                   (14) 

The solution of (14) has the form: 
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 𝑛 =
𝐸

4𝐸𝑐𝐼
∙

1

(
1

2
−

𝐸

4𝐸𝑐𝐼
)

+ √
𝐸2

16𝐸𝑐
2𝐼2 ∙

1

(
1

2
−

𝐸

4𝐸𝑐𝐼
)

2 +
𝐸

4𝐸𝑐𝐼
∙

1

(
1

2
−

𝐸

4𝐸𝑐𝐼
)
.                           (15) 

The deformed part of the beam-strip, ahead of the active punch, takes a sinusoidal shape and shifts in the 

direction of the punch movement in the form of a moving (deformation) wave of length𝑙2 with a speed 𝑣0. 

The shape of the wave is established after the beam-strip loses longitudinal stability. 

Turning to the beam-strip before the punch enters section 𝑙2 we see that this section is loaded with a 

tangential force 𝑇. The tangential force 𝑇 stretches section 𝑙1 of the beam-strip and compresses section 𝑙2. As a 

result of the tangential force, section 𝑙2 receives a longitudinal bend, and in some cases loses longitudinal stability. 

The longitudinal bend of the beam-strip is described using the following equation for the surface layer in partial 

derivatives [5]: 

According to [3] 𝑣(𝑥, 𝑡) = ∑ 𝑧𝑘
𝑛
𝑘=1 (𝑡) sin

𝑘π𝑥

𝑙2
 – transverse deflection of the beam-strip during longitudinal 

bending (for the case of hinged support of the beam-strip); 

β – coefficient of restitution (stiffness) of the elastic foundation of the beam-strip due to the elasticity of 

the inner layers of the part; 

𝐼 – moment of inertia of the cross section of the beam-strip; 

𝑇(𝑥, 𝑡) = 𝑇𝐴(𝑥, 𝑡) =
𝑃

𝑏𝑙1
∙ [𝑓0 − ξ𝑚𝑎𝑥𝑎𝑐𝑜𝑠𝑃0𝑡 + ξ𝑚𝑎𝑥

3 𝑣0
3𝑏̅𝑐𝑜𝑠3𝑃0𝑡] – limit value of the tangential force of 

the beam-strip. 

Substituting expressions 𝑣(𝑥, 𝑡) and 𝑇(𝑥, 𝑡) into the differential equation [5], we obtain a set of differential 

equations in simple derivatives: 

 𝑧̈𝑘 + ω0𝑘
2 [1 − α𝑘 cos 𝑃0𝑡 + β𝑘 cos3 𝑃0𝑡]𝑧𝑘 = 0.                            (16) 

where 𝑘 = 1, 2, 3, … – simple integers; 

ω0𝑘
2 = 𝐸𝑐𝐼 ∙ (

π4𝑘4

𝑚𝑙2
4 +

β

𝑚
−

π2𝑘2

𝑚𝑙2
2 ∙

𝑃

𝑏𝑙1
∙ 𝑓0) – square of the natural frequency of oscillations loaded with a 

constant value of tangential force; 

α𝑘, β𝑘 – constant coefficients of the friction characteristic: 

 

α𝑘 =
π2𝑘2

𝑚𝑙2
2 ∙

𝑃

𝑏𝑙1

∙ ξ𝑚𝑎𝑥𝑣0𝑎 ∙
β𝑚𝑙2

2𝑏𝑙1

𝐸𝑐𝐼𝑘4π4𝑏𝑙1 + β𝑙2
4𝑏𝑙1 + π2𝑘2𝑃𝑙2

2𝑓0

 

β𝑘 =
π2𝑘2

𝑚𝑙2
2 ∙

𝑃

𝑏𝑙1

∙ ξ𝑚𝑎𝑥
3 𝑣0

3𝑏̅ ∙
β𝑚𝑙2

2𝑏𝑙1

𝐸𝑐𝐼𝑘4π4𝑏𝑙1 + β𝑙2
4𝑏𝑙1 + π2𝑘2𝑃𝑙2

2𝑓0

 

 

We denote the function φ𝑘(𝑡), which represents the parametric load on the oscillatory system, from 

equation (16): 

 φ𝑘(𝑡) = β𝑘𝑐𝑜𝑠3𝑃𝑡 − α𝑘𝑐𝑜𝑠𝑃𝑡,                                                 (17) 

if the condition [7] is satisfied: 

 |
φ′𝑘

φ𝑘
| +

ω0𝑘

2π
≪ 1.                                                             (18) 

Then we write equation (16) in the form: 

 𝑧̈𝑘(𝑡) + ω0𝑘
2 [1 + μφ𝑘(𝑡)]𝑧𝑘(𝑡) = 0.                                       (19) 

If condition (18) is not satisfied, then the function φ𝑘(𝑡) is determined according to [7] without the 

transformation effect, through direct integration. According to [5], the generating solution of (19) is represented 

in the form: 

 𝑧𝑘(𝑡) = 𝐴𝑘 cos Ψ𝑘.                                                        (20) 

 

where Ψ𝑘 = ω0𝑘𝑡 + Θ𝑘 – time variable; 𝐴𝑘 – amplitude of deformation waves for the 𝑘-th harmonic; Θ𝑘 – 

initial phase for the 𝑘-th harmonic. 

Then, taking into account the generating solution, according to [5], we have: 

 

 𝐴𝑘(𝑡) = 𝐵𝑘𝑒𝑥𝑝 [−
μ𝑘

4
φ𝑘(𝑡)] ≈ 𝐵𝑘 [1 −

μ𝑘

4
φ𝑘(𝑡)],                                     (21) 

 

where 𝐵𝑘 – constant determined from initial conditions; μ𝑘 – constant parameter set within the range 0 <
μ𝑘 ≤ 1, we take μ𝑘 = 1,з taking into account the value of 𝐵𝑘. 

Next, using simple reasoning, we determine the condition under which parametric oscillations in the system 

will not occur. We consider the expression in square brackets of (21); if it is set to zero, we obtain the 

transcendental equation: 

 β𝑘𝑐𝑜𝑠3𝑃𝑡 − α𝑘𝑐𝑜𝑠𝑃𝑡 + 1 = 0.                                               (22) 

 

We solve (22) with respect to η = 𝑐𝑜𝑠𝑃𝑡, obtaining real values of the variable η, at which the functions 

𝑧𝑘(𝑡) will equal zero. 
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We write instead of (22) the equation for the relative variable η: 

 η3 −
α𝑘

β𝑘
η +

1

β𝑘
= 0,                                                      (23) 

which has the solution: 

 

 η = √−
1

2β𝑘
+ √

1

4β𝑘
4 + (

α𝑘

3β𝑘
)

33

+ √−
1

2β𝑘
− √

1

4β𝑘
4 + (

α𝑘

3β𝑘
)

33

,                            (24) 

 

where = 1, 2, 3, … – mode number for which zones of absence of oscillatory motions are established. 

When considering parametric oscillations, it remains important to determine the frequency range in which 

the unstable state of the systems develops, leading to parametric oscillations and, in some cases, to parametric 

resonance. 

As follows from [9], the critical state occurs when the parametric load equation takes the form of the 

Mathieu function and, in magnitude, is equal to or exceeds the critical Euler force [9]. Since the second part of the 

parametric load in the Hill form does not affect the development of parametric oscillations and resonance, when 

determining the critical frequencies we focus on the solutions and results obtained in solving the Mathieu equation 

[8]. 

Thus, after the transformations performed in [9], we note that the regions of dynamic instability are located 

around the frequencies that are parametrically excited: 

 Θ∗𝑘 =
2ω0𝑘

𝑘
 (𝑘 = 1, 2, 3, … ),                                             (25) 

 

where Θ∗𝑘 – natural frequency of the 𝑘-th mode of parametric oscillations during cutting; ω0𝑘 – natural 

frequency of oscillations of the beam-strip for the mode with index 𝑘. 

Thus, the main parametric resonance occurs when the frequency ratio is: 

 

 Θ∗ = 2ω0,                                                       (26) 

 

for 𝑘 = 1 (if 𝑘 = 2, 3, 4, … – then condition (25) applies). 

It should be noted that under self-excited and parametric oscillations on the surface layers of parts, 

deformation-wave micro-roughness appears, which can be immediately sheared off by the moving punch. 

Therefore, deformation micro-roughness, even in the absence of parametric resonance and when operating in the 

elastic region, are subject to continuous alternating displacements; that is, the surface layers of the parts are in a 

state of multi-cycle fatigue loading. Moreover, the amplitudes of deformation wave oscillations in the surface 

layers exceed the corresponding oscillation amplitudes of the subsurface layers. Such deformations promote the 

separation of the outer layers of the parts from the inner layers. 

The internal layers of the materials of the parts tolerate volumetric compression deformation well due to 

their elastic-plastic properties. However, in the outer layers, due to their brittle properties, critical crack formation 

and local destruction are observed, which leads to intensive wear of the outer layers of parts during frictional 

interaction. 

 

Conclusions  

 

1. Under dynamic loading of interacting parts, the role of parametric and self-excited processes in the 

development of multi-cycle stresses and deformations in the areas of beam-strips under the punch and ahead of 

the punch increases significantly, which leads to the intensification of wear and failure of the contacting surfaces. 

2. To study non-stationary processes in the outer layers of interacting parts, a calculation scheme is applied 

in which the surface layers of the parts are represented as anisotropic plates on an elastic foundation and loaded 

with a tangential force determined by a variable friction coefficient, which in magnitude can exceed the critical 

Euler force. 

3. The causes of the occurrence of dynamically unstable states of the beam-strip are identified, in which 

violations of the integrity of the surface layers of the workpiece and the tool are possible due to the manifestation 

of supercritical stresses and deformations in the material of the outer layers of the interacting parts. 

4. The results of determining dangerous states of the surface layers of parts or workpieces under the action 

of non-stationary loads in the initial moments of interaction, as well as at the moments of the end of the slip effect 

or at the moments of speed equalization during oscillations, are obtained. 

5. The third dynamic problem for the surface layers of the workpiece is formulated and solved. The layers 

are represented in the form of a brittle beam-strip on an elastic foundation, loaded with a tangential force caused 

by non-stationary friction in the contact zone of the parts (under the punch) and in the zone of interaction of the 

punch edge and the beam-strip, which leads to crack formation and premature wear of kinematic pairs. 

6. The practical significance of the studies lies in the fact that for operating mining, metallurgical, and 

transport machines, the zones of unstable operation are calculated, where conditions may be obtained that do not 

ensure the high operational quality of such machines. 
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48 Problems of Tribology 

 

Маліновський Ю. О. , Мікосянчик О. О., , Учитель О. Д. , Скворцов О.О., Власенков Д. П., Ситник 

С. О. , Олійник С.Ю. Динамічні процеси у поверхневих шарах деталей як джерело їх багатоциклічних 

руйнувань при терті і зношуванні 

 

При роботі різноманітних машин і механізмів можуть мати місце прояви рухів коливального 

характеру, які збуджуються за нестаціонарної характеристики тертя. Ці коливання мають місце або на 

майданчику контакта двох деталей, або в зоні, розташованій попереду рухомої деталі. Так у зоні 

майданчику контакта розвиваються нестаціонарна сила тертя, яка приводить до автоколивань майданчику 

контакту, а також до виникнення параметричних коливань у зоні попереду діючого штампу. За певному 

співвідношенню швидкостей прослизання та швидкостей переміщення деталей, автоколивальні і 

параметричні рухи можуть проявитися, або зникнути, а також посилитись, чи послабитись. Ці коливання 

є однією з причин виникнення нерегламентованих шорсткостей (деформаційних), тріщинуватостей і 

лущення деталей, що взаємодіють, а також значних динамічних складових під час навантаження 

виконавчих, приводних та силових механізмів. Фрикційні та параметричні коливання в поверхневих шарах 

деталей з деформаційним хвилеутворенням формує залишкові пластичні синусоїдальні нашарування 

металу, які зрізаються під час взаємодії деталей. Через динамічний характер взаємодії деталей під час 

тертя, зусилля, що діють на площині контакту (поздовжні) перевищують критичне зусилля Ейлера, яке є 

параметричним навантаженням, у ряді випадків приводить до небезпечного параметричного резонансу. У 

роботі визначена область частот поблизу параметричного резонансу. Це є область динамічної нестійкості 

попереду рухомого штампу. У поставленій і частково вирішеній задачі розглянуті фрикційні та 

параметричні коливання при взаємодії деталей, які ведуть до утворення деформаційних хвиль, їх 

часткового, чи повного зрізання, що утворює передумови до інтенсивного зношування, та послідуючого 

руйнування деталей. 

Ключові слова: динамічні навантаження, тертя, знос, фрикційні коливання, автоколивання, балка-

смужка, параметричні коливання, параметричний резонанс, головна зона нестійкості, штамп, протяжна 

деталь, сила тертя, швидкість прослизання, поверхневі шари. 

 


