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Abstract

The article considers the possibility of using the apparatus of the plastic flow theory to evaluate the
stress-strain state of a medium filled with discrete material. The ratio of the rheological model associated with
the Coulomb condition is formulated, which takes into account the characteristic features of the deformation of
discrete materials: the effect of dry coulomb friction and the manifestation of dilatation.

The ratios which describe the boundary condition of the plastic medium, both under the conditions of
Saint-Venant and Mohr — Coulomb, are given. In the solid-state plastic flow model, the Saint-Venant condition
is used as a potential function. Therefore, it is logical to consider the use of the Mohr — Coulomb condition as a
potential function in the plastic flow model of a bulk medium. This is done in the Drucker — Prager model. The
authors analyzed the validity of the findings of this model with respect to the discrete environment.

The ratio for the analysis of the reasons for the discrepancy between the conclusions of the Drucker —
Prager model and the results of experiments with discrete materials is given. The comparison of the magnitude
of the dilatation coefficient with the condition of coincidence of the stress and deformed state in the limiting
stage of deformation of the discrete medium, suggests that the Drucker — Prager model which is associated with
the Coulomb condition doubles the value of this coefficient. The ratio of the Drucker — Prager model is related to
the stresses acting on non-orthogonal planes of the boundary equilibrium, with deformations along the
orthogonal planes of maximum displacement. This leads to a discrepancy between the predicted model and the
experimentally determined values of the dilatation coefficient, as well as the impossibility to reconcile the fields
of the slip lines in the stress and deformation plane.

The authors conclude that the highlighted differences between the theoretical conclusions and the
results of experimental checks can be eliminated by presenting the relations of the model of the plastic flow of
the discrete medium through the stresses and deformations that arise in the twisted conjugate sliding planes.

Key words: discrete environment; internal coulomb friction; dilatation.

Discrete is an environment filled with physically-discrete material: sand; rubble; granular, granular and
similar natural or artificially created materials.

Highlighting previously unresolved parts of a common problem

An important task of engineering mechanics is to describe the contact interaction of such an
environment with structural elements - with the foundations of structures, retaining walls, vehicles, mechanisms
of technological processing of discrete materials. The complexity of solving these problems is the need for a
joint description of the stress-strain state of structural elements and a discrete environment whose laws of
deformation are much more complex than a rigid deformable body and which have not yet been sufficiently
studied.

Setting objectives

Special experimental studies have found that the laws of deformation of discrete materials, as opposed
to solids, must additionally reflect the following features:
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- influence of internal friction;

- manifestation of dilatancy (changes in material density during displacements);

- a significant dependence of the nature of the nonlinear physical dependences of "stress-strain" on the
type of stress state (in the following we consider mainly plane-deformed state).

The purpose of the article is to evaluate the reliability of describing the stress-strain state of a discrete
medium associated with a plastic flow model associated with the Coulomb boundary condition.

Basic material and results

The analysis of the rheological models that were proposed to describe the stress-strain state of the
discrete medium [1] leads to the conclusion that the most complete features of deformation of this medium are
capable of describing plastic flow models.

Unlike the "classical" models of the mechanics of a rigid deformable body, the determining relations of

such models are not formulated as physical dependences between stresses {G} and deformations {8} ,butasa

relationship between stresses and the rate of increase of plastic (residual) deformations {ds} [2]. This

dependence is written in differential form
oD
{de} =d ﬂ ,
o{o}

where @ ({G}) — potential voltage function, or load function;

()

d) —the Lagrange multiplier.
Plastic deformation of materials is associated with the fulfillment of the condition of plasticity. If in the

relation (1) for a potential function @ ({ G}) we accept the condition of plasticity, the ratio corresponds to the

associated rheological model, in other cases, to an unassociated model.

Model of plastic flow associated with the condition of plasticity of a solid

In the theory of plasticity of a rigid body, the flat task is most often considered. The results of the
experimental studies suggest that the flat deformation of plastic material is best described by the Saint-Venant
condition:

S:tmax:0,5(0]—02):0,5\/(0x—0y)2+4riy =1, (2)
where S =1, ® ({ G}) — maximum tangential stress;

O,, O, —the main stresses in the deformation plane;

6,.0,, T, — normal and tangential stresses in the deformation plane x);

xy

T, — material yield strength.
Under this condition, plastic deformation of the material occurs if the maximum shear stress T_

becomes equal to the yield point of the material T, . Maximum tangential stresses T, act on orthogonal shear
planes that are inclined to the main angles i%. It is between these planes that the maximum shear

deformations occur Y, .. . Therefore, dependence (1) in this case describes the relationship between stresses

{0} and strain rates {ds} , occurring on the same planes, and can be considered as a determining relation of the

plastic flow model associated with the Saint-Venant plasticity condition.

There are many stress boundary states that meet the Saint-Venan condition. These stress states can
graphically be represented by a family of Mor boundary circles having a common envelope, parallel to the axis
G, which limits the zone of plastic deformation (Fig. 1).

Each of the boundary circles fully describes the stress state at one point of the plastic region through
invariants 6, and T, = T;.

Fig. 2 depicts one of the boundary circles of Mohr. The abscissa of the center C of the circle is equal to

the average normal stress G, = 0,5(Gx +Gy), circle radius — maximum tangential stress T, =T, . The
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coordinates of the points K and K' correspond to the stresses arising on the planes, inclined to the main angle o .

Points 4 i B — the main stresses G o

min max *

and the points M and M' with coordinates G, = 0,5 (Gx +o, ) ,
=1 =05 (Gmax -0, . ) = T_ — the scaffolds on which Saint-Venant condition is satisfied. These planes
are inclined to the main angle % and in the model of rigid-plastic body are associated with sliding planes. The

set of slip planes forms a grid of orthogonal slip lines (a grid of characteristics in the stress field). Normal o,

and tangents T, stresses occur at each point of these lines.

T M
K
T T Tmax =Tr
xy

ol 4 /4 20

o Cif \Cof \C3 T G n/4.1C / B o

(o)
Tr K
G_V ,./
Oy o M’
60” Gx
60”' Gmax
Fig. 1. Family boundary circles of Mohr Fig. 2. Boundary circle of Mohr provided by Saint-Venant

Therefore, the grid of sliding lines clearly reflects the boundary stress state of the plane region of the
solid body.
Fig. 3 shows an element of the flat region bounded by adjacent sliding lines. There are stresses on its

faces ©, = O,S(GmaX + Gmin) and T, = O,S(GmaX -c,. ) =1,

which are invariants of the plane stress state. This limit stress state can be
represented as the sum of two simple ones: a comprehensive uniform

stretch or a compression stress G, and pure shear stress T . On the
principle of superposition, we obtain expressions for the principal stresses
in the deformation plane xy:

o ax:GO+TT;Gmin:GO_TT’ (3)

m
as well as for stresses on arbitrary orthogonal planes inclined to the

main angles O :

Fig. 3 The flat state of the element 0, =0, +71,C08 20,
of the flat region .
g G, =0, —T,C0s20; (4)
T, =-T, =71,sn2a.

If the orientation of the plates with normals X, y is determined relative to the sliding planes, it is

sufficient to replace the angle in expressions (4) oL by B =a + % . Relations (4) take the form

G, =0,+71,sin2f;
G, =0,—1,sin 2p3; (5

T, =—T, =—T, 0820
The dependences (4) make it possible to obtain a system of differential equations describing the
characteristics of the field of boundary stresses (slip lines) as functions G, and B.

The above correlations of the theory of plasticity cannot be directly used in the model of plastic flow of
a discrete medium because the Saint-Venant criterion does not reflect the fundamental features of deformation of
a discrete material in the limit state - the influence of internal friction and the manifestation of dilatancy.
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Describing the limit state of a discrete medium

The resistance to deformation of discrete materials is exerted by the forces of dry friction, which can
occur only in the area of compressive stresses. Therefore, the criterion for the transition to the limit state of
discrete materials, unlike plastic ones, must first and foremost reflect the influence of internal coulomb friction.
Among such criteria, as shown by special studies [3], the boundary condition of the discrete medium for flat
deformation conditions is most accurately described by the Mohr - Coulomb criterion.

By this criterion, the onset of the limit state of the discrete medium is determined not by the magnitude

of the maximum tangent stresses T but by the magnitude of the maximum ratio of tangent and normal

max °
compressive stresses. The Mohr — Coulomb criterion can be written through the previously introduced flat
stresses invariants with this expression
max
Oy
where (p — angle of internal friction;

=sin @ = const, (6)

O, — average compressive stress.
Therefore, the boundary state of a discrete material, at the occurrence of which plastic deformation of
the environment occurs, is estimated by two parameters G, and ¢ and is graphically represented by a family of

Morh boundary circles having a straight, curved axis that is inclined to the axis G at the angle of internal friction

¢ (Fig. 4). All circles are characterized by the same ratio of parameters % =singQ.
0

TA T
qo R3 0
) Rz o
o9 \'Cj \_&/ ’
’
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144
Oy Ox=0y+Rcos2a
O, 0' i Omax=0O1
Fig. 4. A family of Mohr circles describing Fig. 5. The limited circle of stresses
the limited state of the discrete environment by the Mohr — Coulomb condition

The envelope line limits the area of the discrete material in which the boundary state occurs, and each of
the circles describes the boundary stress state at the point of this region. One of the circles corresponding to the
Morh - Coulomb criterion is shown in Fig. 5. Circle parameters are: radius

R=0,5 (Gmax -0, ) =0,5 (G] -0, ) and the abscissa of the center C

c,=0,5 (G + Gmin) =0,5 (Gl + 02) . A characteristic feature of a circle is that the tangent OM, drawn

max

from the origin, is inclined to the axis G on the corner ¢ . Touch point M (G v Ty ) corresponds to the plane

with the maximum stress ratio —- = tg@, or platform with a maximum deviation of full stress p,, from
Oum
normal. Points 4 and B correspond to the principal stress planes 6, =G, i G, = G, and all other points in

the circle are arbitrary planes.
The Mohr circle (Fig. 5) graphically describes the boundary stress state at a point of a discrete medium

by the Mohr - Coulomb criterion. Criterion (6) itself can be written by invariant parameter relations R and o,
of a circle

T .
—=—"T%=51n0, @)
Gy Oy

due to the ratio of major compressive stresses O, , G, :
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0,5(oc, — - i
i_ (Gl 02) _ cTl 02 :Sln(P, (8)

o, - 0,5(01+02) - c,+0,

or because of the stress ratio T;, , G, along the planes of boundary equilibrium (Fig. 5)

T
M _ tg(p . (9)
Oum

Taken into account that the boundary state of a discrete Mohr - Coulomb criterion is associated with the

magnitude of the stress ratios, it is sometimes convenient to represent it through a relative invariant § =G | / o,

G, —GC -1 .
#:E"_:Sln(p' (10)
c,+o0, ¢&+1
On the threshold of Mohr's circle (Fig. 5) directly we obtain expressions for major stresses O,, O,
through circle parameters

6,=0,+R=0,+0,singp=0,(1+sing);
(11)

6,=06,-R=0,-0,sinp=0,(1-sing),
or for stresses arising on an arbitrary plane with normal » rotated about the principal axis 1 by an angle o.. These
stresses correspond to the coordinates of point K in Fig. 5
Gy =6, +Rcos2a =0, +0,sin@-cos 2o = o, (1+sin@-cos2a); b
T, = Rsin2o. = 6, sin @-sin 2a. (12
To describe the boundary condition of a discrete medium, it is important to determine the stresses G, ,

T,, on platforms with maximum deviation of total stress p,, from normal. With Mohr's circle we get:

G, =6,-Rsing=c,-c,sin’ =0, (l—sin2 (p) =G, cos’ @; o)
T, =Rcos@=0c,sin@-cosp=0,5c,sin2¢.

Platforms with maximum stress ratio T,, / o,, tilted to the main angles TC/ 4+ (p/ 2 and in the statics

of a free-flowing environment, they are associated with slip planes. The set of slip planes in the plane of

deformation X, y form a grid of non-orthogonal sliding lines that intersect at angles (n/ 2+ (p) .

Fig. 6 shows two sliding lines intersecting at point A. The major axis 1 forms with the x-axis o, and

X 0 tangent lines are angles oL+ (n/ 4+¢/ 2) . Since the Mohr —

Coulomb condition determines the orientation of the slip
planes, equations of slip lines (characteristic lines) in the stress
field are directly obtained from expressions (12), (13). The
system of these differential equations was studied in detail by
V.V. Sokolovsky [4] and used by him to solve engineering
problems of free-flow static.

Relations (3) - (5) describe the limit state of the plastic
medium under the condition of Saint-Venant. Similar relations
(6) - (13) are the boundary state of a discrete medium under the

Y Mohr-Coulomb condition. In the solid-state plastic flow model,
the Saint-Venan condition is used as a potential function

Fig. 6. Orientation of sliding lines d)({ G}). Therefore, it is logical to consider the use of the

Mohr-Coulomb condition as a potential function in the plastic
flow model of a bulk medium. This model was first proposed by D. Drucker and W. Prager [5].

The ratio of the rheological model associated with the Coulomb plastic flow model

Potential function ® ({G}) of the Drucker — Prager model, according to the fundamental relation (1),

relates the strain rate {d 8} with limit stresses {G} .
The choice of the potential function of the model in the form of the Coulomb condition (6) allows to

determine the direction of the strain velocity vector {d 8} in the system of orthogonal axes d € — d Y max -
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Indeed, from the ratio (1) { d 8} =d\ the components of the vector are directly determined

o{c}

{ds}(dso, dymax) due to stress G, T

max *

D

de, =022 = g T
0o, o,
oD 1 (14

dy,. =di —d\—

a‘Emax c$0

and their relationship
A= de, ——T"‘i:—sin(p. (15)
deax c$O
T max

Dy rag) )
oo

|
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|
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Fig. 7. The combination of stresses and strain rates

Value A, which relates the ratio of displacement rates to displacement d o / d Ymax With boundary
stress ratio T _ / O, , can be seen as a measure of dilation. It was called the dilatancy ratio.

According to expression (15), the strain velocity vector {d 8} in the coordinate system de,—dy, .
should be perpendicular to the Coulomb boundary surface, which is clearly shown in the fig. 7, which combines

systems of orthogonal coordinates of boundary stresses (GO =T ) and strain rates (d € — dy max ) . Coulomb
boundary surface in the axis system ©,—7T, is described as straight G, = k T,.x With an angular
coefficient k = tga,, oL = arcsin Q.

The perpendicularity of the vector {d 8} to the boundary surface is an important conclusion associated

with the Coulomb condition (6) of the Drucker - Prager model, which requires special experimental and
theoretical verification with respect to discrete materials.

The use of the Mohr-Coulomb condition as a potential function in the Drucker-Prager model not only
takes into account the influence of internal friction and the manifestation of dilatation on the deformation process
of a discrete material, but also establishes a relation between the field of boundary stresses and the field of strain
rates in the array of discrete medium. Laboratory verification of dependence (15) has shown that the theoretical
value of the dilatation coefficient A in most cases significantly exceeds the set experimentally.

For example, the angle of internal friction ¢ dry sand is about 30° (A =sin30° = 0,5). In the

experiments of A.S. Stroganov the coefficient of dilatation of dense sand was A =0,239 (sinl4°), in

experiments by P. Roscoe and S. Friedman the value A was changed from A =0,1 to A =0,35. Not only the
fluffing but also the compaction of loose sands was noted.

More thoroughly, the reliability of describing the stress-strain state of a discrete material by the
Drucker — Prager model can be investigated by comparing the orientation of the planes on which the Mohr —
Coulomb condition in the stress field is realized, with the orientation of the slip planes in the field of strain rates.

In classical plasticity theory, the Saint-Venant condition is realized on orthogonal planes inclined to the

principal angles in/ 4. On these orthogonal planes, maximum shear deformations occur dYy, . . Therefore,



Problems of Tribology 35

with the coincidence of the directions of the principal axes of the stress tensor and the strain rate tensor, the
stress fields and strain rates coincide.
In the model of Drucker — Prager orientations of non-orthogonal planes of boundary equilibrium and

sliding planes with maximum shear deformation rates d7y,_ cannot coincide in reality, since the grid of non-

orthogonal sliding lines in the field of boundary stresses and the grid of orthogonal sliding lines in the
deformation field cannot be reconciled with linear transformations of coordinate systems. The specified
coincidence of slip lines in the field of boundary stresses and strain rates can be explained by incorrect use of the
apparatus of the theory of plasticity of the solid body to describe the stress-strain state of the discrete material.
The theory of plasticity of a rigid body operates with dependences between stresses and strains arising

on orthogonal planes of maximum shear 7y . . This agrees with the description of the stress state in the

condition of Saint-Venant with a deformed state.
The relation of the same Drucker — Prager model combines the dependences between the stresses acting
on non-orthogonal planes of boundary equilibrium - on the planes with the maximum stress ratio

T, / G, =tg@, with dependencies between strain rates dg€,, dy,, on orthogonal planes of maximum
displacement. This mismatch of stress and strain fields can be eliminated if, in the determining relation of the
Drucker-Prager model, the deformed state of the medium is represented by the strain rates d €, dy ,, on non-

orthogonal planes of boundary equilibrium, not on planes of maximum displacement d € — d Y max -

Since the theory of plasticity of a rigid body does not consider deformations on non-orthogonal planes,
it is proposed to describe the boundary stress and corresponding deformed state of the discrete medium due to
stresses and rates of deformations arising on special conjugate planes - in even planes with equal magnitude

/o =tgn.

The description of the stress state due to the stress on the coupled planes is discussed in article [6], and
the analysis of the deformed state is discussed in article [7].

The class of conjugate planes includes the planes of boundary equilibrium for which

T, / o, =1gn,.. =20 . These planes were used by S.S. Golushkevich [8] and P.I. Yakovlev [9] to develop

effective engineering deformation-free methods for estimating the boundary stress state of the soil environment.
To determine shear deformations Y between non-orthogonal directions it is proposed [7] to represent

the deformed state of the medium due to linear deformations €, and rotation (shift) 3, arbitrary direction 7
relative to the principal axis 1.
Shift 3, in the direction 7, which is inclined to the principal axis by an angle o, is determined by

major deformations €,, €, addiction
9, =0,5(¢, —¢,)sin 2a, (16)
the use of which allows to determine the displacement of the displacement Y , between any non-orthogonal
directions @ and b, inclined to the main axis at angles o and [3 ,
Vo =9, +9, =0,5(¢, —¢,)(sin 20.+sin 2B). (17)
As shown in [7], the dependencies between linear d€, and angular d3, deformations as opposed to
dependencies de—dYy, used in the theory of rigidity plasticity, similar to the dependence between stresses

o — 7. That is, circle diagrams that illustrate the tense (G—T) and deformed (ds—dS) the states are

similar.
To use the same relationships between stresses and strains on the conjugate planes in the plastic flow
model of a discrete material, it is necessary to provide not only the similarity of circular diagrams of boundary

stresses (G - T) and strain rates (d e—d 9) , and their full coincidence.
Fig. 8 shows a circular diagram (Mohr circle) describing the variation of the stresses G, T at the point
of the discrete medium at the rotation of the normal of the stress plane by the angle .. Points M and M with

coordinates G, , T, correspond to paired conjugate planes of boundary equilibrium - planes of the greatest

M
deviation of total stress p, from normal.

Deformation dependencies describing the change in deformation dg,, d8, in the limiting state of the
discrete material at normal rotation 7 the deformation plane by the angle 3 clearly shows the circle diagram

d9 —de (Fig. 9).



Problems of Tribology 36

The diagram will completely coincide with the boundary circle of Mohr (Fig. 8), if tangent Om , drawn

to it from the origin will be tilted to the axis d¢, at the angle of internal friction . In this case, the coordinates

of the touch point 7 will be deformed de d9,, normal direction 7 plane of the boundary equilibrium for

rm?
which the ratio of deformations d9, / de. =1tgo.

Therefore, the condition of coincidence of the boundary stress and deformed states of a discrete medium
can be formulated as an equality of stress relations T, / C,, and strain relations d 8rm / d €,, perpendicular to

the sliding plane of the direction:
dd

T
rm — M — tg(p . (l 8)
dgrm G M
d9:
T M
Py Ty _ —”/ x
Tg \on @ o, .- Bt b
o ) 2 472 C de,
! c. A ¢ B O A€ rmin
i d i
dsm
Oy M: \
G, den m——
Ghax A& na
Fig. 8. Mohr’s boundary circle Fig. 9. Circle diagram d9, — de, of strain rates

of discrete environment in the limited state

Condition (18) can be used to analyze the reliability of the description of the Drucker-Prager model of
the stress-strain state of the discrete medium, given that the relations of the model use deformations occurring in
the directions of the deformation planes and not in the directions of their normals. Let us represent the condition

of coincidence of the boundary stress and deformed states due to deformations de,, d9, on the sliding

surfaces by rotating the coordinate axes de,, d8, (Fig. 9) on 90°. In this case, the matching condition is

determined by the dependency”
d9

m

TM Ct 6 dgm GM t (19)
= —— = — , aono = — = — s
de, o AT 59

M m M

and shear deformation dy m between paired conjugate sliding planes m , m, is determined from (17). Taking

into account that d8, =d9, ,and o, =B, = T/4+¢/2, we get:
dy,,. =(dg, —dsz)sin(%ﬂp). (20)

We use the above relations to analyze the reasons for the discrepancy between the findings of the
Drucker — Prager model and the results of experiments with discrete materials.

Let us introduce a potential function q)({ G}) associated with the Mohr — Coulomb condition of a
plastic flow model of a discrete material due to the stress ratio T, / G,, on the sliding surfaces in the form (9):

d)({c}):%:tg(p. 21)

M
From the fundamental relation (1) of the theory of plastic flow, we obtain expressions for the rates of
deformation

do, ~n 22U 5

oo, - Gi ’ )
oD
dy =d (o)) _ g L.
ot G,
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de T
A, =—"=-—"=-1g0, (23)
dy,, c

M

which are similar to the relations (14), (15) recorded in the stresses G, T, -

The dependence (23) reflects the condition of the perpendicularity of the vector {d 8} (d g, d Ym) to
the Coulomb boundary surface presented in formula (9) or the condition of the perpendicularity of the slip lines
in the field of boundary stresses {G} (GM )T, ) and the deformation field {d 8} (d g,.dy, ) )

This conclusion is inconsistent with the condition of coincidence of the boundary stress and strain states
(19), which is formulated as the equality of stress relations T, / o,, and deformations d €, / d Sm , not the strain
ratio de,, /dy,, .

To evaluate the validity of the conclusions of the Drucker — Prager model with respect to discrete
material, we present the dilatation coefficient A~ (23) due to shear deformation Sm the plane of boundary
equilibrium and the main plane, not due to shear deformation Yy, between paired sliding planes. Taking into
account that dy, =28, , from expression (23) we obtain:

= ds,, ST —tgQ , a6o de, =-2tgo. (24)
" 29, d9
Comparing the dilatancy coefficient A =~ (24) with condition (19) of the coincidence of the stress and

M m

deformed state in the limit stage of deformation of the discrete medium one can claim that the Drucker — Prager
model, associated with the Coulomb condition, is twice bigger than the value of the coefficient A . This
explains the discrepancies between the theoretical data and the results of the experiments described above.

Conclusions

The results of the research presented in the article allow us to draw the following conclusions:

1) rheological model of Drucker — Prager, unlike models of plastic flow of solid body, takes into
account the fundamental features of the laws of deformation of discrete materials - the influence of internal
friction and the manifestation of dilatancy;

2) the relation associated with the Coulomb condition of the Drucker — Prager model is related to
stresses appearing on non-orthogonal planes of boundary equilibrium with deformations on orthogonal planes of
maximum displacement. This leads to a discrepancy between the predicted model and experimentally
determined values of the dilatancy coefficient, as well as the inability to reconcile the fields of the slip lines in
the planes of stresses and strain rates.;

3) the marked differences between the theoretical conclusions and the results of the experimental tests
can be eliminated by presenting the model relationships of the plastic flow of the discrete medium due to stresses
and deformations arising on the paired conjugate sliding planes.
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Jopogees O.A., KoBryn B.B. Orninka HanpyxeHO-1e(OpMiBHOTO CTaHy IUCKPETHOTO CEpelOBHIIA
MOZEIUIIO IJTACTUYHOTO IUTHHY.

B cTarTi po3rismacThes MOXKIMBICTE BUKOPUCTAHHS amapary Teopii MIIACTUYHOTO IUTMHY JUISt OIHKH
HAIPYXEHO-1epOpPMOBAaHOTO CTaHy 3allOBHEHOTO IHMCKPETHHM MaTepiajioM cepenoBumia. OopMymoThCs
CHiBBi/HOIIEHHsT acomiiioBaHoi 3 ymoBow KymnoHa peosoriyHoi Mojeni, sKi BpaxOBYIOTh XapaKTepHi
0cOONMBOCTI JlepopMyBaHHSI TUCKPETHUX MatepialiB: BIUIMB CYXOro KYJIOHOBOTO TEpTs i MPOSB AMIATAHCII.
[IpoananizoBaHa [OCTOBIpHICT, BHCHOBKIB Bimomoi Mozeni [pykepa —Ilparepa momo AHCKPETHOTO
CEepEeNOBHUILA.

HaBezieHi criBBiHOIIEHHS, 110 ONUCYIOTh TPAaHUYHUI CTaH IUIACTHYHOrO cepenoBuIna. JloriyHuM citifg
BBa)XaTH BUKOpUCTaHHS yMoBH Mopa — KynoHa sk moTeHmiaibHOi (YHKIIT B MOJENI IUIACTUYHOTO ILIHHY
CHUIIKOT'O CEpeloBHUIIa, 1o 3podieHo B Mmomenm Jlpykepa — [Iparepa. ABTopu mpoaHai3yBald JOCTOBIPHICTH
BHCHOBKIB JIaHOi MOJIEI IIIOJI0 TUCKPETHOT'O CePEIOBHUIIIA.

CrisignonienHs Mozeni Jpykepa — IIparepa noB’s3yt0Th Halpy:KeHHs, 1[0 JIIOTh [0 HEOPTOrOHAIBHUX
TUTOLIMHKAX TPAaHWYHOI PiBHOBard, 3 AeopMallisiMA MO OPTOrOHAJIbHUX IUTOUIMHKAX MAaKCHMAJIBHOTO 3CYBY.
CaMe 1ie IPU3BOJUTD JI0 HECIIBMAMIHHS Nepe0adyeHuX MOJEIUIIO 1 eKCIIEPHUMEHTaIbHO BHU3HAYEHHX BETMYMH
koedillieHTa qUIaTaHcii, a TAKOXK 70 HEMOXIIMBOCTI Y3TOAWTH TOJIS JIHIM KOB3aHHS B IUIOIIMHAX HAINPYXEHB i
IIBUIKOCTEH nedopMariii.

ABTOpamMH 3pOOJIEHO BHUCHOBOK, IO BiIMiueHI pO30DKHOCTI MK TEOPETHWYHUMH BHCHOBKaMH 1
pe3ylbTaTaMH eKCIepHMEHTaIbHUX IEPEeBIPOK MOXKHA JIIKBIJyBaTH MUISXOM IIPEICTABJICHHS CITIBBiIHOLICHBb
MOJIEJ TUTAaCTUYHOTO IUTMHY AMCKPETHOTO CEepeOBHINA Yepe3 HalpyKeHHs i nedopmarii, ski BUHUKAIOTH 110
MapHUX CHPSDKEHHUX TUIONIMHKAX KOB3aHHSI.

Kiro4oBi ciioBa: JquicKpeTHE CepeIOBHIIE, BHYTPIITHE KYJIOHOBE TEPTS, AHIaTaHCIS.



