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Abstract

The paper proposes a method of preventing the loss of Euler stability by thin rods. Such rods do not have
critical forces and therefore do not lose stability from longitudinal compressive force. The method is based on a
temporary change in the stiffness of the rod-support system, in particular, a change in the length of the rod
between the supports when approaching the value of critical forces, and after passing the return to the previous
value. The results of simulation modeling of the rod behavior are presented, which confirm the possibility to
eliminate the loss of its stability with increasing compressive force to the maximum allowable value, which is
determined from the condition of strength.
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Introduction

The work of long rods on critical (according to Euler) values of compressive forces leads to negative
consequences, including major accidents and catastrophes. The only effective way to prevent the loss of stability
of a compressed axial force of the rod is to reduce its slenderness ratio

r=1i,

where [ is the estimated length of the rod, i is the smallest radius of inertia of its cross section. At a given
length, this leads to an increase in the weight of the structure.

Meanwhile, the creation of long rods that do not have critical compressive forces and that do not lose
stability is in principle possible. The authors propose a method of temporary transformation of critical forces into
non-critical ones according to Euler for a long thin elastic rod. This paper presents some results of research on
the model of such a rod.

Literature review

The basic theory of a long thin rod in the elastic state was introduced by Euler [1, 2]. In the linear
formulation, he considered the problem of finding the critical forces of a axial compressed elastic rod of constant
cross-sectional length, resting at the ends on hinged supports. In the case of longitudinal bending, the external

load is the bending moment M_ =P, -y, created by longitudinal compressive force P, with moment arm

y=1(z) [3].

The derivation is based on the approximate differential equation of the curved axis of the rod
E[Ay":Mchr'y’ (l)

where E — is Young’s modulus of elasticity of the rod material;
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I, — is the second moment of area of cross section of the round rod (Fig. 1). This equation is easily
reduced to the form:

y'+k*y=0, 2)
where k = i
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Fig. 1. To the derivation of the Euler formula

The general solution of the second-order differential equation (2) has the form

y = Acoskz+ Bsinkz, 3)

where 4 and B are arbitrary constants determined from the boundary conditions, that is, the conditions for
fixing the ends of the bar on the supports. Since the bar freely rests on supports, one of which is hinge-fixed, and
the other is hinge-movable, the integration constants are determined from the conditions for zero deflections and
bending moments on these supports, that is

y=0at z=0 and z=/;
y'=0atz=0and z=1/.

After substituting these conditions in (3) and solving these equations we obtain: A=0, Bsinkl =0. This
is only possible if either B=0, either sink/ =0. If A=B=0, this means that the deflections y are absent, which
contradicts the condition of the problem. If we accept sinkl =0, then the constants 4 and B can take arbitrary
values, and the deflection y can be arbitrary, including infinitely large, which corresponds to a state of indifferent
equilibrium, i.e. the loss of stability of the rod under the action of critical compressive force The condition

. . . TN L.
sinkl/ =0 is satisfied when, k/ =mn, where neN are natural numbers. Hence, & =T, where taking into

account (2) we have Euler's formula:

cr Zz A" (4)

Thus, the rod has an infinitely large number of critical Euler forces, which relate to each other as squares
of natural numbers n. From equation (3) it follows that the equation of the elastic line of the rod has the form
y=Bsinkz .

Euler's theory was later developed by many scientists, including Grashof [4], Yasinsky [5], Timoshenko
and Gere [6]. In the works of modern authors, for example [7 - 12], the issues of loss of stability by thin rods
loaded with longitudinal force, such as the limits of correct application of Euler's formula, the relationship with
flexibility, the behavior of the rod in the zone of plasticity, etc. are investigated and clarified. However, the issue
of avoiding the loss of stability due to the temporary transformation of critical forces into non-critical ones has
not been studied at all.

Purpose

The purpose of the work was to study the peculiarities of the process of loss of stability according to
Euler of thin rods and to substantiate the method of its prevention by means of simulation modeling.

Presentation of research materials

For the first critical force, the shape of the curved axis contains one half-wave of a sinusoid, for the
second critical velocity and the second critical force - two half-wave sinusoids, i.e. a full wave (sinusoid), for the
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third three half-wave sinusoids, and so on. Thus, each value of the critical force corresponds to its identical
forms of loss of stability (Fig. 2).

If we take advantage of the fact that higher (than the first) forms of loss of stability are in themselves
unstable without the presence of intermediate supports in the nodes of the forms, we can offer the following
method of preventing critical states of the rod.

To prevent the manifestation of the first critical force is necessary against the middle of the length of the
rod (p. A) at a distance of the allowable deflection of the rod. Whereas as soon as the values of the compressive
forces approach the critical values and the deflections begin to increase, the rod, losing stability, will touch the
support in the inaccuracy of the sinusoid, i.e. in the middle of the length /; this length will be "divided" into two
halves and will now be a critical force for him

2 2
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P
cr2 (1/2)2 A 12 A

and the rod will withstand an increase in compressive strength up to P, .
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Fig. 2. Forms of loss of stability at critical forces

Similarly, in order to prevent the manifestation of the second critical force, it is necessary to place
supports with a gap equal to the allowable deflection against the points of the rod B and D. At these points, there
must be an antinode at the loss of stability, which corresponds to the values of the second critical force. Then, as
soon as the value of the compressive force approaches the second critical value, the rod will begin to lose

stability in the second form of bending and will touch the support at points B and D and its length will be
2

"divided" into three parts of length 1/3. Now the critical force for the rod will be P, = 9ZL2EI . » and the rod will

cr3

withstand an increase in critical force to P, .

In general, the idea of creating a rod that does not have critical forces in practice, ie one that does not lose
stability from the longitudinal compressive force is based on the automatic change of stiffness of the rod-support
system, for example, changing the length of the rod between supports when approaching critical forces. After the
passage, the stiffness returns to the previous value, which makes it possible to eliminate the loss of stability with
increasing compressive force to the maximum allowable value, which is determined from the condition of
strength. In this case, to eliminate the critical states of the rod by one, two, three, etc. own forms of loss of
stability of the deflection-deflection deflection should be installed in places of maximum deflection (antinodes)
of the corresponding forms.

If stability loss is to be eliminated for all critical forms, then one of such supports limiting deflection is
installed along the entire length of the rod. When the value of compressive force approaches to the next critical
value, deflections grow in the corresponding sections of the rod. When gap is reached the rod will collide with
deflection limiters installed in the indicated sections, and thus it will receive additional supports reducing its
length between supports, which, as seen from formula (4), changes (increases) the value of critical force.
Therefore rod will no longer be in condition of indifferent equilibrium, which meant loss of stability, and it will
be able to harmlessly transit the values of compressive forces, which now, when touching the bearings, are no
longer critical. When the speed of rotation or the value of compressive force approaches to the next critical
value, other sections of the rod will touch the deflection limiter and the system stiffness will change, similarly to
the manner described above, and these values will no longer be critical and will not lead to loss of stability.
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The implementation of the idea of creating a rod that has no critical compressive forces can be seen, for
example, in the design of recoil devices of some artillery guns with hydraulic recoil brake. When firing, the
barrel under the action of recoil rolls back, squeezing the rod in the form of a long rod, which carries at the
opposite end of the piston with holes, which moves in a cylinder filled with brake fluid. This rod is enclosed in a
shell and this design prevents the loss of stability of the rod under the action of retractable compressive force.

Creating a simulation model of the rod that does not lose stability. To test the feasibility of the practical
implementation of the proposed method, tests were conducted on a specially designed simulation model. A
visual programming system Simscape Multibody was used to model the flexible rod as a massive body with
distributed mass. It is a multi-body modeling environment for 3D-mechanical systems that formulates and solves
the equation of motion for the entire mechanical system.

The horizontally located steel rod of round section with the parameters given in table 1 was modeled.
Under the action of the weight of the rod, its static deflection is equal to y, = 0,21 mm. Fastening method is

hinged (one support is hinged-fixed, the other - hinged-movable). To simulate a flexible rod, a method of
approximating a flexible body with a fixed set of discrete flexible bodies with lumped-parameter method was
used. [13]. This approach approximates flexible body as a set of N solids connected by N-1 springs and dampers.
Shaft elements connected in series with dampers and springs provide concentrated rod inertia. The springs
realize the degree of freedom of the system. Each mass has three degrees of freedom: two rotational degrees of
freedom in the directions X and Y, perpendicular to the axis of the rod Z, which allow bending deformation, and
a translational degree of freedom in the Z direction for axial tensile-compressive deformation (Fig. 3).

Table 1
Parameters of the modeled rod

Length L | Diameter D | Slenderness ratio A | Young’s Modulus, E
1m 20 mm 100 210e9 Pa

Y3 YN+
Kn+1

@3 on Pr+1

Fig. 3. Approximation of a flexible rod with distributed mass
a set of flexible elements with a concentrated mass

The number N of elements «Flexible Element» partially affects the accuracy of the model, the spatial
shape and the speed of calculation of the model. Increasing NV allows to achieve greater accuracy, however, due
to higher computational costs. Therefore, the value of N was chosen experimentally and was N = 20 for the rod
investigated.

The stiffness and internal viscosity coefficients are functions of the material properties and geometry of
the flexible elements and are the same for all elements. In the considered model the linear model of damping is
accepted (Fig. 4). In particular, for axial deformation there is a dependence:

F=—kx-by, %)

AN | E
m m —p where k, the translational spring coefficient of the joint, x is the

translational offset, b, is translational damping coefficient of the joint, v
is linear velocity. The spring coefficient is defined as:

Fig. 4. «Flexible Element» with one
degree of freedom of translational k,=EAJl,
movement

where 4 is the cross-sectional area of the beam, / =L/N is the
length of anundeformed flexible beam.

To deformation the bend of the flexible element, the dependence of the torque is written as:
t=—ky-bo, (6)
where T is the spring torque, k, is the rotational spring constant, Y is the deflection angle, b, is the
rotational damping coefficient of the joint, o is the natural frequency (Fig. 5).



Problems of Tribology

29

52

N

- W

Fig. 5. «Flexible
Element» with one
degree of freedom of
rotation

The bending moment M, acting on the element is equal to:

v = EL
R b

where 7, is the second moment of area, R is the bending radius of curvature.

D [ .
At small deformations it is lawful to accept that y _)E’ therefore equating

the torque that follows from Hooke's law T=4ky and bending moment M, the
spring coefficient becomes [14]:

The translational damping coefficient b, and the rotational damping

coefficient b, (viscous friction) of the model were set empirically. They were

found by comparing the attenuation rate of free oscillations in the rod and its model
[15]. Verification of the finished model was performed based on the specified
deflection y, from its own weight, as well as the rate of damping of the natural
oscillations of the rod.

To limit the bending, the rod model was placed in a tube model with an inner diameter d, =D+2y__,

where y =8 mm is max allowable deflection for rod (Fig. 6). Elements «Translational Hard Stop» were used

to simulate the boundary tube for each of the N elements of the rod. Such elements limit the translational motion
in the plane perpendicular to the axis of the rod by elastic shock interaction. The scattering of the rod impact
energy against the pipe was not taken into account.

Results of numerical experiment and modeling. The created model was investigated in the range of values
of longitudinal compressive force P =0 ... 70 kN so as not to exceed the allowable stresses based on the strength
condition. The experimentally found value of the first critical force was P, =14,7 kN . In Fig. 6 (a) the first

form of bending of a rod at value of force P, is shown.
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Fig. 6. 3D-model of the rod and the shape of its bend in the tube:

a —3D-model of a rod bounded by a tube;
b — the first bending mode of the corresponding rod P,;;
¢ — change the shape of the rod when approaching P,,,;
d — the second bending mode of the corresponding rod P,

The rod was deformed, its maximum deflection was limited by the pipe and was 8 mm, which is the
maximum allowable deflection for the test rod. Having obtained the third resistance in the section from point 4,
further deformation of the cross section of the rod in point 4 became impossible. The reaction force of the third
support at the point where it was touched by the rod was small R, =1xN .
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Increasing the axial load to the level P> P, led to the deformation of other sections, although in general
the rod remained curved in the first form directly to P, ,, which is shown in Fig. 6 (c). When the load increases
P=P, ...P,, the reaction force of the third support decreased to zero R, — 0. When approaching the value
P_,=57,2 kN the rod lost the first form of bending and sharply acquired the second form of bending, shown in

Fig.6 (d). In this case, the rod touched the limiters in sections B and D and has already received two additional
supports. The corresponding absolute values of the reaction forces where R, =R, =2 kN . These forces are

maximum at the time of acquisition and gradually decrease to zero with a subsequent increase in axial load and
deformation of the rod. Thus, the rod withstood the value of the second critical force and began to resist the axial
force (Fig. 7, 8).

Modeling of the rod behavior with a further increase in load was not performed, as it would lead to an
increase in stresses in the material above the limit of proportionality.
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Fig. 7. Dependence of deflection Fig. 8. Dependence of the reaction force at the point
at points 4 and B on applied load of contact rod with limiter (point A) from the load
Conclusions

The results of the study showed the fundamental possibility of creating and practical application of
structures with rods that do not have critical Euler forces and do not lose stability. The general idea of creating
structures that do not have states of indifferent equilibrium is that they should be able to change their properties
(parameters) when approaching such states, and after its passage to return to the original properties. These design
parameters can at a given moment change their quantitative values automatically or forcibly at the command of
the operator by changing the stiffness, mass, length, number of supports and other factors that determine the
quantitative values of indifferent equilibrium parameters, for example, when reaching the maximum allowable
deformations construction.

These design parameters can change their quantitative values automatically or forcibly at the command of
the operator at a given time. The values of stiffness, mass, length, number of supports and other factors that
determine the quantitative values of the parameters of indifferent equilibrium states can change, for example, at
the time of achieving the maximum allowable deformation of structural elements.
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I'opomiko A.B., Poiiaman B.IL., Ilerpamyxk C.A. MojentoBaHHs TOHKOTO CTPM)KHA, 1[0 HE Mae
KPUTUYHHX CHJI 1 HE BTpavae cTiikocTi 3a Elinepom.

Y po0oTi 3arpornoHOBaHO METO] HEAOMYIIEHHSI BTPATU CTiHKOCTI 3a EijepoM TOHKHUMHU CTPYIKHSIMHU.
Taxi cTprXHI HE MAIOTh KPUTUYHHUX CHII i TOMY HE BTPa4yaroTh CTIHKICTh Bij ITO3/IOBXKHBOI CTHCKYBaJIbHOI CHIIH.
Meron 0a3yeTbcsi Ha THMYacoBill 3MiHI JKOPCTKOCTI CHCTEMH CTPHIKEHB-OIIOpA, 30KpEMa, 3MiHI JIOBXKHHH
CTPIDKHS MIXK OIMOpaMHu IpH HAONWKEHHI [0 3HAYEHHs] KPUTUYHHUX CHJI, a MiCIs MPOXOAYy  IOBEpHEHHI 110
MONIEPEHHOr0 3Ha4YeHHs. [IpencTaBiieHi pe3ynbTaTH IMITAlliHHOIO MOJCIIOBAHHS MOBEIIHKH CTPHIXKHS, SIKi
MiATBEPKYIOTh MOXIIMBICTh YCYHYTH BTpaTy MHOro CTIMKOCTI NpH 3pOCTaHHI CTUCKYBAJIBHOI CHIIM [0
MaKCHMAaJIbHO-IOMYCTUMOT'O 3HAYEHHSI, SIKUI BU3HAYAETHCS 3 YMOBH MIITHOCTI.

Karouogi ciioBa: CTiiiKicTh CTPIIKHS, KPUTHYHA CHIIa, (JOPMH 3THHY, MOJICITIOBAHHS, THYYKHH CTPIHIKEHB.



