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Abstract 

 

The article gives a thermodynamic substantiation of the direction of nonequilibrium processes in 

tribocouples of machine parts, in tribosystems, based on the principles of maximum and minimum entropy. It is 

clarified how nonequilibrium processes can be substantiated on the basis of the minimum and maximum 

function of entropy production: linear and nonlinear nonequilibrium processes and their different 

thermodynamics. The entropy production function is considered as a function of thermodynamic force flows and 

thermodynamic flows. 

The theory of nonequilibrium processes is based on the Liouville equation for classical tribosystems, 

taking into account external influences or perturbations. It is shown that in thermodynamic processes in 

tribosystems the principle of entropy maximization is realized as the second principle of synergetics. 

 

Key words: triadconjugation of details, nonequilibrium processes, thermodynamics, synergetics, entropy, 

thermodynamic flow 

 

Introduction 

 

The essence of the principle of maximum entropy production G. Ziegler is that the evolution of the 

nonequilibrium tribosystem develops in the direction of maximizing the production of entropy in it under given 

external constraints. The second law of thermodynamics in the language of entropy production is formulated as 

follows: entropy production 0S  not only has a positive value, but also goes to the maximum. 

Given the statistical interpretation of entropy and the work of Boltzmann and Gibbs, entropy, and 

consequently its production, tends to increase to the maximum level assumed by the constraints imposed on 

tribosystems. The final equilibrium state of the tribosystem is the most probable and is described by the 

maximum number of microstates. Such a statistical interpretation allows us to consider the principle of 

maximum entropy production as a natural generalization of its Clausius-Boltzmann-Gibbs formulation, and in 

some cases as a consequence. 

 

Literature review 

 

The peculiarity of nonequilibrium thermodynamics in tribosystems is initially based on the equations of 

balance of entropy, momentum energy and matter and on the first two laws of thermodynamics [1,2] . 

Compared with the principle of I. Prigogine [ 4 ] , the principle of G. Ziegler [5] describes a wider range 

in the evolution of nonequilibrium tribosystems and is a more generalized approach in their study and study of 

the relationship of characteristics and properties with entropy (entropy production) [3] . G. Ziegler's principle 

makes it possible to constructively construct both linear and nonlinear thermodynamics. It follows that Onsager's 

variational principle is valid only for linear nonequilibrium thermodynamics of tribosystems [4,6] . At that time, 

the principle of Onsager-Diarmati, as a partial statement, is valid for stationary processes, in the presence of free 

forces. From it follows the principle of I. Prigogine [7-9]. If given thermodynamic forces (flows), then, based on 
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the principle of G. Ziegler, the tribo system will adjust its thermodynamic flows (forces) to maxS  [10-12]. 

If s it is a quadratic function, then the relationship between flows and forces in the tribosystem is adjusted as a 

result. If the system is in a stationary weakly nonequilibrium state, but part of the thermodynamic forces remains 

free, then the currents generated by Ziegler will begin to reduce the thermodynamic forces, and those in turn - 

thermodynamic flows. As a result, the production of entropy is minimized: minS  [4]. 

It is possible to substantiate nonequilibrium processes in tribosystems by the methods of general 

statistical theory [13-15]. Classical kinetic theory is not suitable for relatively dense tribosystems with a strong 

interaction between their elements and particles. The problem is to create a nonequilibrium microscopic theory 

that can describe such systems. This is primarily to obtain the equations of energy transfer, momentum, mass and 

calculation of kinetic coefficients directly from the equations of classical and quantum mechanics. Such a 

statistical theory began to develop intensively from the middle of the twentieth century [16,17]. L. Onsager 

stated: the temporal evolution of the function of a given physical quantity in the equilibrium system occurs on 

average by the same laws as the change of the corresponding macroscopic variable in the nonequilibrium system 

[1,2,10,18]. 

Being in an unbalanced state, the tribosystem does not feel how it got into it - due to fluctuations or due to 

external influences, and therefore its next reaction must be the same. As a result of relaxation of the 

nonequilibrium tribosystem near the state of equilibrium and resorption of fluctuations will occur according to 

the same laws [19,20]. 

 

Purpose  
 

The aim of this work is a thermodynamic substantiation based on the maximum entropy of the direction 

of nonequilibrium processes occurring in the triad conjugations of machine parts. 

 

Results 

 

If the tribosystem, the conjugation of machine parts, is in some nonequilibrium state, then after some time 

(relaxation time) it will come to an equilibrium state from the set of possible states for which the entropy will be 

maximum. The change in entropy during this period of time will be the maximum among the possible, and 

therefore the maximum becomes the production of entropy. The variational principle gives possible relations of 

linear nonequilibrium thermodynamics: 

 


k

kiki XLJ ;   kiik LL  ,     (1)  

where ikL – the matrix of kinetic coefficients independent of iJ and kX . 

The system of equations (1) makes it possible to describe the transfer of entropy, momentum, mass. The 

above equations (1) are valid for relatively small thermodynamic forces, when the relationship between forces 

and flows is almost linear. This is L. Onsager's first deductive formulation of linear nonequilibrium 

thermodynamics. If the values of irreversible forces are given iX , then the true flows iJ  maximize the 

expression )],(),([ kikiS JJJX  . The variation in flow J at constant X is equal to: 

 

0)],(),([  XkikiSJ JJJX ;     (2) 


ki

kiikki JJRJJ
,2

1
),( ,      (3) 

 

where   – the scattering potential ( 0 ); ikR  – coefficient matrix, inverse matrix ikL , matrix ikR  – 

can be considered a system tensor, which should be considered as the sum of symmetric ikS  and antisymmetric 

ikA  tensors: 

  
ki

kiikkiik JJAJJS
,2

1
.      (4) 

 

Because for the antisymmetric tensor 0iiA  and kiik AA  , the antisymmetric part of the tensor ikR  

in equation (3) does not contribute to the scattering potential   and the tensor ikR  becomes symmetric 
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kiik RR  . Substituting the expression 
i

iiS JX  into equation (2), as well as transforming (3) by 

replacing the variation derivative over the corresponding flows, we obtain: 
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The equation for thermodynamic force after differentiation will look like: 
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2

1
.     (6) 

 

Since the flow function is nonnegative 0 , the solution of equation (6) with respect to unknown 

flows is equal to: 

 

  

k k

kjkkjkj XLXRJ 1
,      (7) 

where jkjk LR 1
. In this case jkR – a symmetric matrix, it is 

1

jkR also symmetric. 

This suggests that the expression )],(),([ kikiS JJJX   in equation (2) has one extreme point 

ki JX , , which is described by expressions (6) and (7). Because the flow function   is a homogeneous 

quadratic positive function, this point is the point of maximum. 

Note that the Onsager variation principle is formulated for thermodynamic flows in the tribosystem. For 

the space of forces in the tribosystem, according to I. Diarmati, if the values of thermodynamic flows are given 

iJ , then the irreversible existing forces iX  maximize the expressions ),(),( kiiiS XXYJX  , ie we have: 

 

0)],(),([  JkiiiSX XXYJX ;     (8) 
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where   0, ki XXY  is the scattering potential in the force space of the tribosystem. 

Analysis of entropy production shows that its function is a symmetric bilinear form. Then according to 

the principle of Diarmati equation (2); (3) and (8), (9) are equivalent. 

The principle of minimum entropy production, formulated by I. Prigogine, against the background of the 

apparatus of nonequilibrium thermodynamics also describes various nonequilibrium processes supported by 

constant applications of irreversible forces jiX i ,1,   where nj  , n is the number of forces in the system 

and entropy production is minimal nji ,...,1 , disappear. 

Prigogine's principle is a simple consequence of the Onsager-Diarmati principle. The theory of linear 

nonequilibrium thermodynamics is widely used in tribosystems: 

– it becomes possible to solve the system of equations of mass transfer, momentum and energy, because 

the number of equations is equal to the number of unknowns; 

– using non-diagonal coefficients ikL , it becomes possible to describe cross-flows in chemical, electrical 

and other kinetic processes; 

– it is possible to obtain additional information about the values of kinetic coefficients; 

– the presence of entropy production values s  that have extreme values in the nonequilibrium state 

allows to obtain additional information about the characteristics and properties of the tribosystem. 

Note that linear nonequilibrium thermodynamics in tribosystems describes thermodynamic forces of 

small magnitude. Linear nonequilibrium thermodynamics cannot explain and describe the fundamental problems 

of self-organization, oscillatory processes, etc. Onsager's linear thermodynamics in thermodynamic theory is 

generalized to the nonlinear case on the basis of the maximum entropy production (G. Ziegler's principle). In the 

flow space  kJ  we have: 
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To find the functional dependence )( kk JX , G. Ziegler proposed the principle of maximum entropy 

production S : if an irreversible thermodynamic force iX  is given, then the true flow iJ  that satisfies the 

equation 
i

iiiS JXJ )( contributes to the maximum entropy production. S  [5] . 

This principle can be widely used in the theory of plasticity in the form of the principle of maximum rate 

of dissipation of mechanical energy (Mises principle): the rate of dissipation of mechanical energy per unit 

volume during plastic deformation has maximum value for the actual stress state among all stress states. 

plasticity. The strain rate is considered fixed. This principle of the theory of plasticity is in fact generalized to all 

nonequilibrium thermodynamics. 

For nonequilibrium processes described by linear nonequilibrium thermodynamics, in the tribosystem at a 

given complex of forces there is always a maximization of the max)( is J  entropy production function, ie 

from the Ziegler principle we can obtain the Onsager principle. G. Ziegler's principle is realized in the system of 

equations: 
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Where the space of thermodynamic forces is determined by the expression: 
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Substituting the last expression for the thermodynamic force in the second equation of system (11), we 

obtain: 1
1

2 
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ie μ = 2. 

Given this, we have: 
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Taking into account equation (10) and making some transformations, we obtain: 
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The latter indicates that the principle of G. Ziegler follows the variational principle of Onsager. 

The research shows that the function of entropy production, as a function of flows, is convex, and G. 

Ziegler's principle proves a mutually unambiguous correspondence between flows and forces and 

triadconjugations of details. This is confirmed by the geometric interpretation of the function )( iS J : it 

)( iS J  tries to go to zero when 0iJ , and the whole surface )( iS J  is sign-defined. When 0)( iS J , 

for arbitrary values of forces, the line of intersection of the surface )( iS J  and the plane 
i

ii JX  will lie in 

the negative region and maxS  corresponds to this line. 

Based on the principle of G. Ziegler, it can be argued that there can never be physically realized states of 

tribosystems with negative entropy production, ie always 0s . In the variational construction of 

nonequilibrium thermodynamics, a particular species s  is postulated, iJ and iX  there is some freedom in 

expression. 
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If in the tribosystem there are two thermodynamic forces 1X  and 2X , which are known functions of 

flows 1J  and 2J . The entropy production in this case is equal to: 

 

      1212121121 ,,, JJJXJJJXJJS  .     (15) 

 

The orthogonality condition is: 
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Converting (16) and (17), taking into account (15), we obtain: 
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where Δ is the deviation from the orthogonality condition, which is finally in these conditions equal to: 
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Assuming that Δ → 0, we have: 
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Equation (19) defines a class of functions s  for which thermodynamic forces are determined. It is valid 

for the quadratic function S  (15) if the Onsager reciprocity relations are valid. 

If we assume that the fluctuation of quantities ia near the equilibrium state occurs according to a linear 

law (proportional to Xi) and that they are ergodic, we can obtain reciprocity and give kinetic coefficients ijL  

through time correlation functions to quickly change ia  the corresponding values: 
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where )()( oata ji
 is the averaging over the equilibrium ensemble of functions )(tai

 with the distribution 

function )(aP : 
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where k B  – the Boltzmann constant; )(aS – change of entropy at fluctuation SSaS eq  )( ; eqS  – 

entropy system in equilibrium; )......( jie aaaa


 – a set of values that characterize the system. 

The physical meaning of expression (20) is as follows: the longer the fluctuation, ie, the slower the 

attenuation of the correlation function, the greater the canonical coefficient. 

Let the tribosystem at the moment 0t be in an unbalanced state with entropy 0S . Until the next time t, 

when the difference 0tt   is significantly longer than the duration of one interaction, but less than the relaxation 

time, the system can go to one of the states with entropy S1…SN (S1<…<SN) . Due to the fact that the ongoing 

process in the tribosystem is spontaneous, the entropy Si, will be greater than S0. According to Onsager's 

approach, the transition to the state with entropy SN will be the most probable. Each of the states S1.. SN can be 

considered as a fluctuation, the probability of which is greater the greater the entropy of the equilibrium state 

min Neq SS . As a result, the value 

0

0

tt

SSN




 will be maximum possible and the system evolves 

according to the principle of maximum entropy production maxS . 
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Modern theory of nonequilibrium processes is characterized by a great variety of approaches, but the 

main ideas are quite close to each other [ 21,22 ]. The Liouville equations [ 23,24 ] for classical tribosystems are 

taken as a basis: 

0
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
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where ),,( tpqq  is the phase function of the particle distribution of the triboelement material; q , p – 

coordinates and momentum in 6N – dimensional space; t – time; iy – imaginary unit; Ll is a linear Liouville 

operator. 
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where φ is a function; Hr is the Hamiltonian of the system, H r = H r (q,p,t). 

We believe that the nonequilibrium macroscopic state is described by a set of observed quantities 
t

mP , 

which is the average value of the corresponding basic dynamic variables Pm (energy, momentum, number of 

particles). Since 
t

mP it does not unambiguously define the distribution )(t , we choose the one that 

corresponds to the principle of max information entropy. Finally get the quasi-equilibrium distribution ρq: 
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the Masier-Planck function, which is determined from the rationing condition, and the Lagrangian factors 

Fm(t) are selected from the self-matching condition: 
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where ),!/( зN

phNdqdpdГ   N – the number of particles of the material of the tribosystem element, hp 

– the Planck constant. 

Based on equality (26), the average values on the quasi-equilibrium ensemble (24) coincide with the true 

value of the macroscopic quantities. 

Let at some point in time t we have: 

)()( tt q
  ,       (27) 

Then the solution of Liouville's equation (22) is a function [44,45]: 
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It is determined that due to the significant infinity of classical phase trajectories, the behavior of the 

macrosystem at considerable time intervals should not depend on the microscopic characteristics of the initial 

conditions. Evolution with equal probability can begin with any state )(tq
 in the time interval from 0t to 

t and the distribution takes the form: 
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After some transformations of equation (16) we have: 
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Note that the preboundary statistical distribution satisfies the Liouville equation with an infinitesimal 

source on the right: 
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When 0 , the source selects the "delayed solution" of this equation and describes the irreversible 

evolution of the system. 

Correlations (30, 31) form the basis of the method of nonequilibrium statistical operator, which can be 

used to obtain kinetic, hydrodynamic or relaxation equations that describe the evolution of the nonequilibrium 

system at different time scales [1-3,9]. Note that the idea of the method is similar to the ideas and results of other 

existing approaches to building a general theory of nonequilibrium processes from the first principles. 

If the effect or perturbations that disturb the equilibrium of the tribosystem are weak enough, then the 

given equations can be simplified by leaving linear perturbation corrections to the equilibrium values according 

to the theory of linear reactions. 

Let the perturbation be represented as an expression 
j

jj BH , where Hj are some stationary external 

fields; Bj – conjugate dynamic variables. The stationary equations of the reaction parameters of the system F m 

for this perturbation has the form: 


n

nmnm FD ,       (32) 

where inmmn PPD );(   – generalized transition probability; 
j

jijmm HBP  );(   – drift member. 

Variational principle can be used to solve equations (32). The test set of reaction parameters of the system 

satisfies the condition: 
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nmnmmm FDFF .      (33) 

Based on this, we can formulate and prove the following principle: the response parameters of the 

tribosystem, which is the solution (32), maximize among all functions  ,mF  subject to condition (33), the 

entropy production of the system is equal 
j

t

jj BH  to the positive constant factor. According to this principle, 

there is a selection of flows (response parameters) that maximize the production of entropy at given forces. A 

similar generalization was made by H. Nakano, who pointed not only to the maximum entropy production s , 

but also to the maximization of the transfer coefficients determined by the linear reaction theory. Given the 

universality of the principle of maximizing information entropy G. Hacken, considers the second beginning of 

synergetics [13,25]. 

If the external production of entropy is equal 
i

iiSe IX , then the internal production of entropy 

)(i , where  the microscopic parameters describing the internal state of the elements of the tribosystem of 

the system. If the thermodynamic forces X i are fixed and maintain the state of the tribosystem, which evolves 

from some initial state to stationary with parameters 
* with the relaxation time of the system  , then to 

produce the entropy of any stationary nonequilibrium state internal and external s must be equal 

 
i

iii JX )()( * . 

 

Conclusions  
 

1. There is some hierarchy of processes developing in tribosystems: at short intervals the system 

maximizes the production of entropy maxs  at given fixed forces at the observed time, and as a result 

linear relations will be valid (1); on a large scale, the system varies with free thermodynamic forces to reduce 

entropy production mins . This indicates that the speed of the tribosystem's attempt to reach the state with 

maximum entropy is the highest. 

2. The system at each time so selects its thermodynamic flows at fixed thermodynamic forces, so that the 

change in entropy was maximum and, accordingly, the movement of the tribosystem to the final state is the 

fastest. This occurs continuously or abruptly (at bifurcation points), depending on the specifics of the system. In 

the latter case, several forces can correspond to one force at the same time, from which the one that satisfies the 

Ziegler principle is selected, because the relationship between flows and forces is ambiguous. 

3. To construct nonequilibrium statistical mechanics of tribosystems based on the Liouville equation, it is 

necessary to obtain time-irreversible transfer equations. The transition to the irreversibility of processes in 

tribosystems is due to the rejection of a complete description of the distribution function to a brief description of 

their nonequilibrium states and states of elements. 
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Аулін В.В., Лисенко С.В., Гриньків А.В., Голуб Д.В. Термодинамічне обґрунтування 

спрямованості нерівноважних процесів в трибоспряженнях деталей машин на основі принципів 

максимуму і мінімуму ентропії 

 

В статті дано термодинамічне обґрунтування спрямованості нерівноважних процесів в 

трибоспряженнях деталей машин, в трибосистемах, на основі принципів максимуму і мінімуму ентропії. 

З'ясовано, як нерівноважні процеси можливо обґрунтувати на основі мінімуму та максимуму функції 

виробництва ентропії: лінійні та нелінійні нерівноважні процеси й різні їх термодинаміки. Функцію 

виробництва ентропії розглянуто як функцію потоків термодинамічних сил і термодинамічних потоків. 

В основу розгляду теорії нерівноважних процесів покладено рівняння Ліувілля для класичних 

трибосистем з урахуванням зовнішнього впливу або збуренння. Показано, що в термодинамічних 

процесах в трибосистемах принцип максимізації ентропії реалізується, як другий початок синергетики. 

 

Ключові слова: трибоспряження деталей, нерівноважні процеси, термодинаміка, синергетика, 

ентропія, термодинамічний потік 


