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Abstract

Modern tribology makes it possible to correctly calculate, diagnose, predict and select appropriate materials
for friction pairs, to determine the optimal mode of operation of the tribo-joint. The main parameter for solving
friction problems and other problems of tribology is the topography of the surface. The main purpose of the models
in these tasks is to display the tribological properties of engineering surfaces. In the framework of the classical
approach, the topography of the surface is studied on the basis of its images from the point of view of functional
and statistical characteristics: the evaluation of the functional characteristics is based on the maximum roughness
along the height and the average roughness along the center line, and the statistical characteristics are estimated
using the power spectrum or the autocorrelation function. However, these characteristics are not only surface
properties. They depend on the resolution of the device for measuring the surface geometry and the length of the
scan. However, the degree of complexity of a surface shape can be represented by a parameter called the fractal
dimension: a higher degree of complexity has a larger value of this parameter. Fractal dimensionality is a
characteristic of surface relief and makes it possible to explain tribological phenomena without the influence of
resolution. This article provides an overview of mathematical approaches to the description of the relief of
engineering surfaces, in particular statistical, stochastic and topological modeling, their limitations, advantages
and disadvantages. The implementation of the principles of the theory of fractal structures is discussed, which
makes it possible to introduce the degree of imbalance of the tribological system into the analysis of structure
formation in the surface and near-surface layers of materials and to describe the development of friction and wear
processes. This is the basis for controlling the structure of the surface layers of materials with given properties.
The concept of fractals, used for the quantitative description of the dissipative structure of the tribojunction zone,
makes it possible to establish a connection between its fractal dimension and mechanical properties, as well as
critical states of deformation of metals and alloys. The course of research and stages of fractal modeling, the
classification of methods of fractal analysis of the structure of engineering contact surfaces are considered. A
critical analysis of modern models based on the energy-spectral density function, which are quite similar to fractal
models, is presented. Readers are expected to gain an overview of research developments in existing modeling
methods and directions for future research in the field of tribology.

Keywords:surface relief; statistical models; stochastic models; fractal models; energy spectral density
function.

Introduction

Tribotechnical indicators of materials (compatibility, wear resistance, antifriction, etc.) characterize the
behavior of the entire tribological system as a whole [1]. Therefore, it is not possible to establish a connection
between the above indicators and the geometric and/or physical-mechanical-chemical properties of the elements
of the friction pair.

The article deals mainly with engineering surfaces, that is, those used in engineering practice. It is known
that all technical surfaces are rough [1, 2, 3], so contact between technical surfaces is carried out using several
contact points [4]. If the surface profile z(x) is determined using the Fourier distribution, and the term "roughness"
is defined as a short-wave form, then the technical surface is defined as a long-wave form and is called a "wave-
like" surface [5]. If the waviness is removed from the surface profile, the rough surface can be considered
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nominally flat [6]. The roughness of technical surfaces is a decisive factor for the performance of tribological
components. The surface profile has a huge influence on energy dissipation during sliding of dry engineering
surfaces and, accordingly, on friction [7].

Increasing the reliability of many technical systems is impossible without an in-depth study of the processes
occurring on friction surfaces; development of physical ideas about friction and wear; application of modern
research methods based on the results and methods used in classical fundamental and applied physical and
mathematical sciences; use of computer technologies.

This article presents a critical review of some popular functional, statistical, fractal, and related methods
for modeling and analyzing surface roughness. Prospective trends in the development of mathematical modeling
in tribology are proposed, determined on the basis of the obtained data and statistics of the published literature in
this field. After all, the choice of appropriate surface characterization methods and calculation methods for the
study of various surfaces is the main problem of current studies of engineering surface topography.

Modern mathematical modeling in the study of the mechanism of contact and destruction of engineering
friction surfaces develops in the following main directions: statistical modeling, stochastic modeling, topological
modeling, fractal modeling.

Probabilistic and statistical characteristics of surface roughness

Modern research involves a systematic approach to the study of tribotechnical problems. The importance
of such an approach increases in the case of applying probabilistic statistical methods in solving problems in the
field of friction, since this process is quite complex and has a stochastic nature of functioning. The method of
creating mathematical models of the friction and wear process using the apparatus of the theory of similarity,
dimensions and mathematical planning of the experiment is quite progressive, since the transition to generalized
coordinates sharply reduces the number of factors that must be taken into account and gives sufficiently justified
values of the initial parameters. Most tribological systems work in accordance with the Pareto principle, which
states that only some of the many factors are significant from the point of view of the system's characteristics. The
methods of group consideration of arguments, a priori ranking of factors, rank correlation, random balance and
others are used to determine essential factors. The rational choice of the appropriate method is determined by the
availability of a priori information about the researched object. Regression analysis is widely used to establish the
relationship between input and output parameters and to obtain a mathematical model adequate for the object under
study.

One of the first attempts to apply statistical methods to describe surface roughness was presented by Abbott
and Firestone, who calculated the cumulative distribution function of surface heights:

®(2) = [ p(t)dt,

where ¢(z) is the probability density function.

In tribology, this parameter is called the Abbott-Firestone curve or the bearing area curve. Subsequently, a
huge number of statistical roughness parameters were introduced [8]. These characteristics were related to both
the vertical distribution of heights and the horizontal distribution of rough profiles [9].

The next step in surface roughness research was the idea of modeling based on the theory of random
processes. This idea was first implemented by Linnik and Khusu [10], who suggested using the details of the
stationary Gaussian random process graph and the correlation function for the Gaussian random process N(x) to
describe the surface roughness:

N(x) = N(0) - e-alxD, @)

where N(0) and a are some roughness parameters. A similar idea was presented later by Whitehouse and
Archard [11]. They proposed to describe the Gaussian profile z(x) of a random rough surface by the distribution
of the heights of its protrusions and the correlation (autocorrelation) function of the process R(3):

R(8) = lim = [ [20x + 8) - 2] [2(x) — 2. @

where Z is the middle line of the profile.

Statistical modeling results are effective if the roughness is Gaussian (normal). If the roughness is not
normal, then the properties of the sample trajectory are not fully determined by the mean and covariance functions.
Therefore, the statistical modeling technique includes a stage of assessing the reliability of the model, which is
based on proving the assumption of a Gaussian (normal) distribution of the heights of the projections of the rough
surface.

There are many criteria for testing this assumption. Each of these criteria provides a quantitative assessment
of the closeness between a theoretical Gaussian distribution and an observed sample of measurements by
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calculating a p-value. Estimates are based on certain statistics of the relevant criterion. According to the literature
review, the most popular criteria for checking the normality of roughness of different surfaces are: Pearson,
Kolmogorov-Smirnov (KS), Anderson-Darling (AD), Cramer-von Mises (CVM), Shapiro-Wilk (SW), Shapiro-
Francia (SF) criteria ), Lilliefors (LF) [12]. The p-value is a number that characterizes, for the observed
measurements, the significance on a scale of [0, 1] that the hypothesis of a normal distribution law is true. As a
rule, an acceptable level of significance is nominated (5%). The trend of using statistical tests on both nano and
micro scales is relevant.
Non-Gaussian processes can be generated by a stochastic differential equation:

dX(X) = — O(X(x) — Pdx+o(X(x))dWB(x),

where x > 0 and WB(x) is a standard Brownian motion (Wiener process). Choosing the appropriate value
of the parameter p and the function o(-), we obtain a certain distribution of the process X(x) by height with the
autocorrelation function p(x) = e—0|x| , by the power spectrum G(®)=276/(02+w2) for any choice of pn and o(-).

Research has proven that the surface relief is a non-stationary random process, that is, this statistical
parameter depends on the scale. In other words, the accuracy of this characteristic parameter of the contact problem
is affected by the length of the sample and the resolution of the measuring device [13].

Statistical models of contact with multiple protrusions between two nominally flat surfaces are the most
popular for predicting the contact behavior of rough surfaces, their assumptions and simplifications greatly limit
their reliability, and the criteria for identifying protrusions and their characteristics lead to significant deviations
in the calculated topographic input parameters, which are also strongly dependent from the resolution of the
topography measurement technique. Typical engineering surfaces are also not isotropic, and the distribution of
ledge heights is not Gaussian [14].

Methods of topological modeling of the structure of the surface layer

Traditional methods of topological modeling (geometric assessment) of the formation of various objects,
including in tribology, are based on the approximate approximation of the structure of the object under study (in
tribology of surface and near-surface layers) by geometric shapes, for example, lines, segments, planes, polygons,
polyhedra, spheres. These techniques are based on classical Euclidean geometry, the topological dimension of
which is an integer. At the same time, the internal structure of the object under study is usually ignored, and the
processes of structure formation and their interaction with each other and with the environment are characterized
by integral thermodynamic parameters. This, naturally, leads to the loss of a significant part of information about
the properties and behavior of the studied systems, which, in fact, are replaced by more or less adequate models.
In some cases, such a replacement is quite justified. However, there are problems when the use of topologically
non-equivalent models is fundamentally unacceptable. In particular, for the modeling of structurally complex
objects, where a generalized concept of a specific physical representation of the structure and description of the
properties of the object is necessary.

An example of topological modeling of elastic contact between two nominally flat metal surfaces is the
Greenwood-Williamson model [6]. The surface relief model is a set of spherical segments having the same radius
of rounding of the upper part of the protrusions and located on the middle plane of the rough surface. The model
is based on fairly clear physical provisions about the contact interaction of rough surfaces in the elastic state of
frictional contact spots (the number of contacting spheres of a certain height increases when the surfaces approach
each other) [6]. Adopting a constant radius of the upper part of the protrusions simplifies the modeling of the
contact interaction process, while the accuracy of the calculations decreases. And at low loads, when we have to
take into account sub-roughness when determining the contact parameters (when the contact between two rough
surfaces consists of a large number of contact spots of different sizes), the Greenwood-Williamson model is
inapplicable. Majumdar [14] managed to eliminate the shortcomings inherent in the Greenwood-Williamson
model using fractal modeling.

Fractals Approaches to Surface Topography

In fact, the fractal terminology for describing surface roughness was pioneered by Berry and Hannay [16],
who argued that the geometric properties of rough surfaces can be characterized by a new concept of "fractal”,
which was described in detail by Mandelbrot [17]. He introduced the concepts of fractal, fractal geometry and
fractal dimension (FD).

Fractal geometry became widespread in tribology thanks to the works of A.-K. Janahmadov, V. lvanova
[18, 19], which are devoted to the analysis and control of structure formation in alloys, surface and near-surface
layers of materials as open nonlinear systems that are far from a state of thermodynamic equilibrium. Such systems
are unbalanced due to the dissipation of energy received from the outside. As a result of self-organization, stable
structures can arise in such systems, which exist under the condition of constant dissipation, that is, loss of energy
by the system. With the appearance of a complex ordered structure in the system, entropy increases, which is
compensated by a negative flow of entropy from the outside.
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To date, it has been established that the resistance to destruction of metals and alloys is determined by the
dynamic structure that is formed in the process of deformation and has dissipative properties. In tribology, surface
layers and all internal boundaries should be considered as an independent planar nonlinear subsystem with broken
translational invariance, which is the leading functional subsystem in a deformed solid. The main part of the
stresses arising during friction is concentrated in the near-surface layers of the friction elements. The reconstruction
of the surface layer under the action of external thermal loads occurs precisely in the process of establishing the
temperature field and is a process of dissipative structure formation associated with deformation defects [19].

Self-organized dissipative structures in open systems are fractal [17]. This makes it possible to apply fractal
modeling when studying the physical and mechanical nature of the destruction of materials by introducing new
quantitative indicators of structures in the form of fractal dimensions.

The basis of fractal modeling is the concept of a fractal - a self-similar structure with a fractional dimension,
which has the property of scale invariance. In general, fractals are a powerful tool for understanding and designing
materials with complex structures and properties [17]. It is based on the works of Russ JC [20], Mandelbrot [17],
Feder [21], and others.

The fractal dimension FD characterizes any self-similar system: when the linear dimensions change by u
times, the fractal value changes by uFD times. The fractal dimension is not related to the topology, but to the
method of construction of the considered object [21].

For a fractal structure, the dimensionality or, usually, the fractional parameter FD, describes the
preservation of statistical characteristics when scaling. Fractal dimensionality allows you to quantitatively describe
microstructures and their constituent elements, to establish the actual area of collision of phases, the actual lengths
of "rough” lines and surfaces, and to determine other structural parameters related to the properties of materials.
The fractional metric dimension of such objects not only characterizes their geometric image, but also reflects the
processes of their formation and evolution, as well as determines their dynamic properties. Fractals provide a
compact way of describing objects and processes in strictly quantitative terms.

The fractal model assumes that the engineering surface is self-similar (a part of the surface reflects the
entire object) and scaling (a part repeats its structural features at a different measurement scale). Thus, the fractal
approach has the potential to predict the behavior of a surface phenomenon at a particular length scale based on
observations at other length scales.

The self-similarity of structures is established on the basis of the analysis of certain geometric patterns and
their measurements at different magnification scales. In order to establish the fractality of the structure, it is
necessary [22]: 1) to check self-similarity; 2) determine the limits of self-similarity; 3) calculate the fractal
dimension.

The fractal tribomodeling methodology is explained in Figure 1, where the main stages of the research and
their results are defined.

object

(engineering processing sample —. combined microscopy )-> picture
surface)

definition of the area of existence |_fractal synthesis |

of structural self-similarity:
= | - self-similarity check; model of characteristic

- determination of limits of self-similarity; geometric shapes

- calculation of fractal dimension (obtained through iterations)

as a means of studying the
initial structures of the object

[ calculation (computer simulation) |

results:

- quantitative description of the
microstructure and its constituent elements; lanaiysis and interpretation of results
- determination of structural parameters
related to surface properties

relationship between
property and fractal structure

Fig. 1. Information model of the study of structural characteristics of the engineering surface based on fractal analysis

It should be noted that determining the relationship between a property and a fractal structure is a difficult
task, since the existing models establishing these relationships for periodic structures are not applicable to fractal
ones [23]. The solution of this problem requires the development of fractal analysis of microstructures, the
determination of the area of existence of structural self-similarity, as well as the development of fractal synthesis,
which includes the modeling of characteristic geometric shapes (through iterations) as a way to study initial
structures in real materials.

Below (Figure 2) is a classification of the main experimental methods of studying statistically self-similar
tribo-structures.
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] experimental methods for determining fractal dimension

[ porous surfaces | - porometry method; o
- according to secondary electronic emission data;

- small-angle scattering method
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- adsorption methods

- by the mechanical properties of the object
- fractographic (metallographic) methods:
- the method of cut islands
- Fourier analysis of profiles
- method of vertical sections
- similarity transformation method

[ failure surfaces |

[ toidentify dendritic structures |  visual identification

Fig. 2. Classification of experimental methods for determining the fractal dimension of statistically similar
structures

It should be noted that fractographic (metallographic) studies are the most direct methods of determining
the fractal dimension of statistically self-similar profiles and surfaces of natural objects.

Fractal theory is used as a mathematical model for random surface topography, which can be used as input
in modeling contact mechanics. In many tribological applications, some geometric parameters defined in
Euclidean space, such as the unfolded area, bearing surface, cavity, and material volume, are very difficult to
measure independently of the unit of measurement. The values of these parameters increase when the measurement
scale is reduced. Fractal geometry can be used as an adaptive space for rough morphology, in which the roughness
can be considered as a continuous but non-differentiable function, and the FD dimension of this space is an intrinsic
parameter to characterize the surface topography [15]. Fractal dimensionality is used as an indicator of the real
values of various scale-dependent parameters, such as length, surface, and roughness volume, and as an invariant
parameter for analyzing the distribution law of the area of contact points.

Real physical objects, which have signs of self-similarity, can rarely be described using only one value of
the fractal dimension. That is why the analysis based on the theory of multifractals - non-homogeneous fractal
objects - has become very popular recently. A characteristic of a multifractal is an infinite spectrum of such
dimensions, which is called the generalized fractal dimension or Renyi dimension [21].

With the help of multifractal characteristics, phenomena in contact mechanics, wettability, and lubrication
of rough material are described, where knowledge of the area of the supporting surface, the developed area, or the
volume of voids is directly related to the scale of observation [22].

Another important step in advancing the fractal approach to the description of surface roughness was the
study of the Weierstrass-Mandelbrot fractal function by Berry and Lewis [24]. Mandelbrot [17] generalized the
Weierstrass function, the graph of which is continuous everywhere and nowhere differentiable, and introduced the
complex-valued Weierstrass-Mandelbrot (WM) function W(x) and its special real case C(x; p):

W(xp) = L p Pr(1 — e"*)eien,
®
C(xt;p) = P~ P™(1 — cos(p™x)), p > 1, 0<p<L.

where ¢n are arbitrary phases. Box-counting dimension (the Minkowski dimension) of graphs C(x; p) is
equal to D =2 — B. There is no rigorous mathematical proof that its Hausdorff dimension is the same. The plot of
the function C(x; p) has often been used to model rough profiles.

Later, Weierstrass-type functions were used by many researchers as a model of rough surfaces [22].

For a while, fractal models were all too popular. There are reviews of the application of fractal concepts in
contact problems, in fracture mechanics, and several articles on the use of fractal concepts in tribology [25, 26].

Thus, let's define some main features of the fractal approach.

1. The authors in [25] divided fractals into mathematical and physical (natural) fractals. Both mathematical
and physical fractals use the concept of coverage. This means that the object (set) is covered by cubes of size
greater than or equal to §. Fractal geometry is based on mathematical fractals. Mathematical methods of fractal
geometry are described in many books and articles where various FDs are studied as applied to mathematical
objects. Various FDs are used in research, mainly Hausdorff dimension (dimH) and box-counting dimension (the
Minkowski dimension) (dimB) (and the Hausdorff dimension of the set S may not be equal to the box-counting
dimension of dimBS, but it is known that dimHS < dimBS.) These FDs can be calculated by taking the limit at &
—0[17].
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A mathematical fractal curve has an infinite length. Even if a mathematical fractal curve is continuous
everywhere, it is non-differentiable. Therefore, it is often very difficult to formulate a boundary value problem for
solids that have a fractal boundary.

If real-world objects or numerically modeled objects have a power-law number-radius relationship, then
those objects are physical fractals. The power law of the number-radius ratio has the form:

N(8)~6-D, 5*<8< 8*, N(R)~(R/5)D, r*<R<R*, @)

where N(9) is the number of elements covering the object of size §, D is the dimension of the object FD, &*
and 0* are the upper and lower limits of the physical fractal law, respectively. The first relation (4) is used when
the coverage size § varies and the object size R is fixed, while the latter relation is used when the coverage size o
is fixed and the object size R varies. In the latter case, R* and r* are the upper and lower cutoff limits. The ratio
In(N(8%)) / In(R) is used to estimate the D value.

The main difference between these types of fractals is as follows: the physical behavior of the fractal (4) is
observed only in a limited range of scales, while for the study of mathematical fractals it is necessary to take into
account the scales of consideration up to the zero limit.

If FD is specified, it is convenient to use the fractional part FD — D*. Then FD of fractal profiles and
surfaces are equal to 1 + D* and 2 + D*, respectively.

2. Self-similar sets are a very specific kind of fractals. In general, self-similarity is not related to
mathematical fractals. Their scaling properties are based on the scaling of the fractal measure or quasi-measure
[25], while for physical fractals their scaling properties are reflected by relations (4).

3. On average, the estimate of the FD value is 1.5. However, if the FD value is less than two or three orders
of magnitude, the fractal concept is not useful [26].

4. In addition, the term fractal geometry is also quite often loosely applied to a set of semi-empirical or
empirical methods for estimating the FD of objects. In general, the FD values obtained by different practical
methods are not reliable [25].

5. As noted by Whitehouse [27], there is very little scatter in the FD values obtained for surfaces produced
by different manufacturing processes. In addition, there is no well-established algorithm for estimating the
intercepts of the fractal law (3).

6. The roughness of real bodies is not a mathematical fractal. In [25] using fractal parametrically
homogeneous surfaces, it is shown that the tribological properties of a rough surface cannot be characterized only
by the fractal dimension of the surface.

Fractals are only mathematical idealizations of complex forms of natural objects. Of course, it is possible
to use a mathematical fractal as a possible model that reflects the power dependence of the number-radius of a
natural object within a limited range of scales. However, the resulting task can be very difficult.

Thus, the physical value of the fractal approach is very limited. Furthermore, if the fractal scaling has a
small range that spans only 1.5 or 2 orders of magnitude, then fractals do not provide a scale-independent
description of surface roughness.

Power Spectral Density Function (PSDF) Approaches to Rough Surfaces

Currently, another trend is quite popular, namely the description of rough surfaces using exclusively the
PSDF (power spectral density function) of the surface relief [28]. By Fourier transformation of expression (2) for
R(3), we obtain the power spectrum G(w) or the power spectral density function (PSDF). If the frequency of the
signal is denoted by ®, then the PSDF is defined as:

G(w) = %foooR(S)cosmB dé. (5)

Developing the random signal approach, Sayles and Thomas [29] presented experimental relationships
between wavelength and scaled power spectral density for many different surfaces. They argued that the scaled
spectral density functions of many surface profiles can be approximated as G(®) = 2nA/®2. Sayles and Thomas
[29] called A the surface topothesis.

Borodich et. al. in [25] showed that models based solely on the power spectral density function (PSDF) are
quite similar to fractal models, and these models do not reflect the tribological properties of surfaces. In particular,
it is shown that different profiles can have the same PSDF.

Conclusions

An overview of mathematical approaches to the description of the topography of engineering surfaces is
given. Itis noted that, despite a fairly large number of parameters used to characterize the surface relief, only some
parameters are quite useful. However, their use is quite limited, for example these parameters may be useful at the
meso- or even micro-scale, but they may be useless at the nano-scale.
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There are many models of random processes, but only the case of Gaussian processes is well developed.
An analysis of the publications showed that undamaged surfaces are quite often Gaussian at both the micro- and
nanoscales, while polished surfaces are not normal.

Based on the analysis of literary sources, an information model for the study of the structural characteristics
of the engineering surface based on fractal analysis and the classification of experimental methods for determining
the fractal dimension of statistically similar structures have been developed. Some shortcomings of fractal
approaches and typical incorrect statements about fractals are identified. It is argued that the practical utility of
fractal approaches is quite questionable. It should not be expected that the use of a mathematical fractal model of
a rough surface will give significant advantages. Usually, such models are mathematically complex. Thus, a strict
approach to fractal modeling can only replace a complex problem with another, more complex than the original
one. In addition, the dimensions of physical (natural) fractals cannot be used as scale-independent parameters.
Adequate explanations of the fractal concepts used must also be provided, otherwise results may be misinterpreted.

Surface roughness models based solely on the properties of the autocorrelation function or its Fourier
transform (PDSF) are also discussed. It was pointed out that the PDSF approach to non-Gaussian surfaces does
not reflect the tribological properties of the surfaces.
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Hpau L.B., Iuxa M.O., Badak O.Il., Kopryn O.C. MojentoBaHHs NOBEpXHEBOi OynOBHM MaTepiaiiB
TPUOOTEXHIYHOTO IIPU3HAYECHHS

CyuacHa TpuOOJIOTiSl a€ MOXJIMBICTH NPAaBWIBHO PO3PaxOBYBaTH, AiarHOCTYBaTH, IPOTHO3YBaTH M
miI0MpaTH BIAMOBIAHI MaTepiaid map TepTs, NpH3HAYaTH ONTUMAaJbHUI PEXHUM poOOTH TpUOO03'€HAHHS.
OCHOBHHUM ITapaMeTPOM IS BHPIIIEHHS Ipo0iIeM TepTs Ta iHIIHUX Ipo0IeM TpUOOIIoTii € Tormorpadist MoBepXHi.
OcHOBHE TNIpU3HAYCHHS MOEICH B IUX 3ajadax — BimoOpakeHHS TPHUOOJIOTIYHMX BIIACTHBOCTEH iH)KEHEPHIX
MOBEPXOHb. B paMKkax KIIACHIHOTO MiAX0Iy TOrorpadis HOBEpXHi JOCIIIKY€ETHCS HAa OCHOBI 11 300paskeHb 3 TOUKU
30py (YHKIIOHATBHUX i CTATHCTUYHUX XapaKTEPHUCTHK: OWIHKA (DYHKI[IOHANBHUX XapaKTEPHUCTHK MAroTh 3a
OCHOBY MaKCHMAJbHY HIOPCTKICTh 32 BHCOTOIO i CEpeAHI0 IMIOPCTKICTh MO IEHTPaJbHIA JiHii, a CTaTHCTHYHI
XapaKTepUCTHKH OIIHIOIOTHCS 3a IOMOMOTOI0 CIEKTpa IOTY)XHOCTI abo ¢yHkmii aBTOKOpessmii. OmHak, i
XapaKTEePUCTHUKHU HE € JIMIIE BIACTUBOCTSMH NOBEpXHi. BoHM 3anexarh BiJ pO3UIHLHOT 34aTHOCTI pUIIaLy s
BUMIPIOBaHHS TeOMETPii IIOBEpXHIi Ta JOBXKHUHU cKaHyBaHHs. O/IHaK, CTYIiHb CKJIATHOCTI (pOpMH IIOBEPXHI MOKHA
MOZIATH Yepe3 IapaMeTp, SIKUH Ha3UBAE€ThC (PPAKTAIHHOIO PO3MIPHICTIO: BUIIMI CTYIIIHb CKIAJHOCTI Ma€ Oiblie
3Ha4YeHHs OO0 NapaMeTpa. PpakTaiabHa PO3MIPHICTH € XapaKTEPUCTUKOIO peNbedy MMOBEPXHI Ta Ja€ MOXKIMBICT
MOSICHUTH TPUOOJIOTIYHI siBUIa Oe3 BIUIMBY PO3MIIBHOI 31aTHOCTI. Y IIiif CTATTi MOAAHO OTJISA MaTEeMAaTHYHUX
HiIXoMAiB 10 onucy penbedy IHKEHEpHHX IMOBEPXOHb, 30KpeMa CTaTUCTUYHE, CTOXAaCTHYHE 1 TOIOJIOTiuHE
MOJICITIOBAaHHS, 1X OOMeEXeHHs, mepeBard 1 Hemoiiku. OOTOBOPIOETHCS BHPOBAKCHHS MNPHUHIUINB Teopii
(hpaKTadbHBIX CTPYKTYp, IO Ja€ MOJMJIMBICTP yBECTH B aHANli3 CTPYKTYPOYTBOPEHHS B IIOBEPXHEBUX 1
MPUTIOBEPXHEBUX IMapax MaTepialliB CTYIiHb HEPiBHOBAXXHOCTI TPHUOOIOTIYHOI CHCTEMH M ONMHCATH PO3BUTOK
nponeciB TepTs i 3HomyBaHHs. CaMe Iie € OCHOBOIO KePYBaHHS CTPYKTYPOIO IIOBEPXHEBHX LIApiB MaTepialiB i3
3aaHMMH BJacTUBOCTAMH. KoHuenmist ¢pakraiiB, BUKOPUCTOBYBaHA IS KiJbKICHOTO ONMHUCY JUCHIIATUBHOL
CTPYKTYPH 30HH TPHOO3'€IHAHHS, JO3BOJISAE BCTAHOBUTH 3B'S30K 11 ()pakTalbHOI PO3MIPHOCTI 3 MEXaHIYHUMH
BJIACTHUBOCTAMH, a TAKOXK KPUTHYHAMH CTaHAMH AedopMallii MeTaliB i cruiaBiB. Po3risHyTO Xia HOCTIIKEHHS 1
eTany (ppakTaIbHOrO MOJIENIOBAHHS, Kiacu(ikalifo MeTo/iB (pakTaJbHOTO aHaji3y CTPYKTYPH IH)KEHEPHHX
MOBEPXOHb KOHTAKTY. [10/JaHO KpUTHYHHI aHAII3 Cy4acHUX MOJIENIEH, sIKi MAlOTh 32 OCHOBY €HEPrOCHEKTPaIbHY
(yHKIIIO IIUIBHOCTI, 1 € TOCUTh CXOXKUMHU Ha (paktanbHi Mozpeni. O4iKyeTbes, 110 YUTa4i OTPUMAIOTh OTJISA
PO3BUTKY JOCHTI/DKEHb ICHYIOUMX METOJIB MOJICJIOBAHHS Ta HANpsAMKH MaiOyTHIX JOCHI/KEHb Y raiysi
TpuOOJIOTiI.

KawuoBi cioBa: penped MOBEpxXHi; CTATUCTHYHI MOJENi; CTOXaCTHYHI MOIETi; (pakTaabHI MO
€HeprocreKkTpanbHa (QYHKIIS MUTEHOCTI



