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Abstract 

 

A comprehensive methodology has been developed to assess the maximum contact stresses and 

deformations in the point contact zone and the maximum tangential stresses, including their position in the 

subsurface zone in depth and in the rolling direction when the microgeometry of the rest contact.  

 

Key words: Point contact zone, fatigue life, friction bearing units (bearing assemblies), maximum contact 

stresses and deformations, maximum tangential stresses, microgeometry. 

 

Introduction  

One of the most important factors limiting the durability of bearing units is fatigue damage, namely pitting, 

which occurs during repeated cyclic loading. Since metal elements are damaged, fatigue is usually associated with 

the problem of metal stability and microgeometry of the contact zone. While fatigue life has been significantly 

increased by controlling the type and size of non-metallic inclusions, heat treatment and the introduction of 

alloying additives to the base metal, little or no thorough research has been paid to the influence of microgeometry 

in the contact zone, especially for bearing assemblies. 

In any case, a comprehensive calculation methodology is needed that would allow to take into account the 

influence of microgeometry on the fatigue life of bearing units.  

 

The purpose of the work 

 

To develop a comprehensive methodology for assessing the influence of microgeometry on the maximum 

contact stresses and deformations in point contact, the maximum tangential stresses and their penetration position 

in the subsurface zone along the depth and direction of rolling under resting friction conditions. 

 

1. Technique for researching the properties of coatings for the influence of microgeometry. 

 

The method of calculating the maximum stresses, deformations, position and value of the maximum 

subsurface tangential stress is necessary to assess the fatigue life of friction bearing units [1]. 

Hydrodynamic lubrication is characterized by surfaces that fit well together, that is, surfaces that have a 

high degree of geometric similarity, and the load is transferred over a relatively larger plane. In addition, the actual 

plane for such surfaces remains virtually constant with increasing load. 

But many bearings do not have a very good surface fit. The full load falls on a relatively small plane. As a 

rule, the actual contact area increases significantly with increasing load, but still remains small compared to 

surfaces that fit well together. The loads per unit area for adjacent bearings are relatively small, about 1 MPa and 

rarely 7 MPa. But the load per unit area in contacts with non-adjacent surfaces, like to the contacts of ball bearings, 

usually exceeds 700 MPa even with a moderate load on the bearing. Such high pressures lead to elastic deformation 

of the materials, resulting in elliptical contacts that can support these loads. Therefore, appropriate simplified 

calculations of stresses and deformations in the contacts of non-adjacent surfaces are required. 

To model a real friction unit, it is necessary to know the field of static contact of interacting bodies. 

Determination of the properties of static contact of interacting parts in non-conformal (with local contact) nodes 

http://creativecommons.org/licenses/by/3.0/
http://tribology.khnu.km.ua/index.php/ProbTrib
https://doi.org/10.31891/2079-1372-2023-107-1-6-12
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is reduced to determining the type and type of contact field, maximum contact and tangential stresses and strains 

in the field and within the contact field (Fig. 1). 

 
Fig. 1 - Geometry with point contact friction 

 

In general, the geometry of undeformed contacting bodies can be represented by pressing two ellipsoids. 

Two bodies with different radii of curvature in the two principal planes (x and y), passing through the contact 

between the bodies, touch at one point at zero load. This state is called point contact, in which the radii of curvature 

are denoted by r (see Fig. 1). It is assumed that convex bodies have positive curvature and concave bodies have 

negative curvature. Thus, if the center of curvature lies inside the body, the radius of curvature is positive, 

otherwise it is negative.  

It is important to note that if the choice of x and y coordinates satisfies the condition: 

 
1

𝑟𝑎𝑥
+

1

𝑟𝑏𝑥
 ≥

1

𝑟𝑎𝑦
+

1

𝑟𝑏𝑦
,                                                          (1) 

 

then the x-coordinate determines the direction of the minor semi-axis and the y-coordinate determines the 

major semi-axis of the contact ellipse that occurs when the load is applied. The direction of motion is always given 

along the x-axis. The sum of curvatures (reduced radius of curvature), which is necessary in the analysis of contact 

stresses and strains, is determined by the following formula: 

 
1

𝑅
=

1

𝑅𝑥
+

1

𝑅𝑦
,                                                                      (2) 

 

where:                                                                
1

𝑅𝑥
=

1

𝑟𝑎𝑥
+

1

𝑟𝑏𝑥
,                                                                   (3) 

 

  
1

𝑅𝑦
=

1

𝑟𝑎𝑦
+

1

𝑟𝑏𝑦
.                                                                    (4) 

 

The ratio of radii of curves α is determined by the following formula: 

𝛼 =
𝑅𝑦

𝑅𝑥
.                                                                               (5) 

 

The shape of the plane of such contacts is called point contacts. Point contacts can be elliptical (Fig. 2, a), 

when the ratio of radii of curvature α ≠ 1, or circular (Fig. 2, b), when α = 1, since rax = ray and rbx = rby, then 

according to expressions (3) and (4), it turns out that the radii of curvature Rx = Ry = r/2. If the radii of curvature 

ray and rby are infinite, the initial linear contact is transformed into a rectangular contact under load. 

 

  
 

a – elliptical contact 

 

б – circular contact 

 
Fig. 2 a, b. Shape of friction point contact at change of microgeometry, made by optical interferometry 
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The ellipticity parameter k is defined as the ratio of the diameter of the elliptical contact in the y direction 

(transverse direction) to the diameter in the x direction (direction of movement): 

 

𝑘 ≡
𝐷𝑦

𝐷𝑥
.                                                                 (6) 

 

If condition (6) is satisfied and α ≥ 1, then the contact ellipse will be oriented with a large diameter across 

the direction of movement (see Fig. 2, a), i.e., k ≥ 1, which is characteristic of the contact form formed in ball 

bearings with an outer ring and tubular roller bearings. Circular contact (see Fig. 2, b), where α = 1, k = 1, is 

characteristic of ball bearings with self-aligning outer ring. In the elliptical contact, in which α < 1, k < 1, the 

contact ellipse, on the contrary, will be oriented with a small diameter across the direction of movement and is 

characteristic of some gears and locomotive wheel contact on the rail (this option was not considered in this work).  

If two elastic bodies are brought into contact under load, a plane appears, the shape and size of which 

depends on the applied load, the elastic properties of the materials and the microgeometry of the contact. 

Under conditions of elastohydrodynamic (EHD) lubrication, two surfaces are separated by a lubricating 

layer, the thickness of which has the shape shown in Fig. 3. 

With the usual parabolic approximation for the shape of an undeformed film, the thickness of the lubricating 

layer under deformation will be as follows: 

 

ℎ(𝑥; 𝑦) = ℎ𝑜 +
𝑥2+𝑦2

2⋅𝑅
+ 𝑑(𝑥; 𝑦)  − 𝑑(0; 0),                                              (7) 

 

where x; y - Cartesian coordinates. 

The total normal deformation d (x1; y1) of two surfaces is defined by the following equation: 

 

𝑑(𝑥1; 𝑦1) =
1

𝜋⋅𝐸′ ∬
𝑝(𝑥;𝑦) ⋅𝑑𝑥⋅𝑑𝑦

((𝑥−𝑥1)2+(𝑦−𝑦1)2)
1
2

𝐴
,                                                     (8) 

 

where the reduced modulus of elasticity Eʹ is equal: 

 

𝐸′ =
2

(
1−𝜈1

2

𝐸1
+

1−𝜈2
2

𝐸2
)

,                                                                   (9) 

 

where E1 and E2 are the elastic modulus of the 1st and 2nd bodies in contact with each other; ν1; ν2  are the 

Poisson's ratios of the 1st and 2nd bodies, respectively; x1; y1 are the nodal points along the x and y axes. 

 

 
Fig. 3. Microgeometry of circular friction contact taking into account elastic deformations: 

h0 - central thickness of the lubricating layer; d(0;0) - the value of elastic deformation in the central contact area; 

h(x; y), d(x; y) - current value of thickness and deformation; hk = (x2+y2)/2R - current value of thickness at h0 = 

0; Rx - equivalent radius of curvature in the X plane. 

 

For an approximate calculation of deformations and stresses in point contact, a simplified calculation of 

stresses and deformations can be used according to the method [2], which allows solving the classical Hertz 

problem without the use of complex mathematical calculations on a computer using simplified formulas. 

The classical Hertzian solution for deformations requires the calculation of the ellipticity parameters k and 

the calculation of elliptic integrals of the first ψ and second ε kind. For point friction contact, the parameters ψ and 

ε as functions of α are simplified by means of approximating curves. These parameters make it possible to 

determine the deformation δ in the center of contact with a small loss of accuracy, but without the use of complex 

mathematical calculations when using diagrams, as well as the maximum contact stress σmax in the center of contact 

depending on the ratio of the radii of the curves α. 

The maximum contact stress in the center of the point contact σmax is calculated by the following formulas: 
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- for circular contact: 

 

𝜎𝑚𝑎𝑥 =
3⋅𝐹

2⋅𝜋⋅𝑎2,                                                                   (10) 

 

where F is the applied load, N; 

𝑎 = (
6⋅𝜀⋅𝐹⋅𝑅

𝜋⋅𝐸′ )

1

3
 – circumferential contact radius, m. 

 

- for elliptical contact: 

𝜎𝑚𝑎𝑥 =
6⋅𝐹

𝜋⋅𝐷𝑦∙𝐷𝑥
,                                                             (11) 

where F is the applied load, N; 

𝐷𝑦 = 2 ∙ ((6 ∙ 𝑘2 ∙ 𝜀 ∙ 𝐹 ∙ 𝑅)/𝜋 ∙ 𝐸′) – diameter of the major axis of the elliptical contact, m (see Fig. 2, a); 

𝐷х = 2 ∙ ((6 ∙ 𝜀 ∙ 𝐹 ∙ 𝑅)/𝜋 ∙ 𝑘 ∙ 𝐸′) – diameter of the small axis of the elliptical contact, m (see Fig. 2, a). 

The maximum deformation in the central contact zone δ is calculated by the following formulas: 

- for circular contact: 

𝛿 = 𝜓 ⋅ [(
4,5

𝜀⋅𝑅
) ⋅ (

𝐹

𝜋⋅𝐸′)
2

]

1

3
,                                              (12) 

 

- for elliptical contact: 

𝛿 = 𝜓 ⋅ [(
4,5

𝜀⋅𝑅
) ⋅ (

𝐹

𝜋⋅𝑘∙𝐸′)
2

]

1

3
.                                                               (13) 

 

One of the causes of wear is material fatigue caused by cyclic strong and elastic deformations on the 

surface. Fatigue cracks are formed at a certain depth in the plane parallel to the rolling direction. Therefore, 

special attention is paid to the amplitude of the tangential stress in the part of the plane where it reaches a 

maximum. 

The value of the maximum tangential stress of the point contact max is determined by the formula: 

 

 

𝜏𝑚𝑎𝑥 = 𝜎𝑚𝑎𝑥 ⋅
√2⋅𝑡−1

2⋅𝑡⋅(𝑡+1)
,                                                     (14) 

 

where  𝑡 = 1 + 0,16 ∙ 𝑐𝑠𝑐ℎ (𝛼2𝜋 2)⁄  – a reduced auxiliary parameter. 

It should be noted that max represents the maximum half-amplitude of the subsurface orthogonal 

tangential stress. 

Taking into account that the stresses are referred to a rectangular coordinate system with the origin at 

the center of contact, the z - axis coinciding with the internal normal of the body under consideration, the x - 

axis along the rolling direction and the y - axis perpendicular to it, we find the position of the maximum point 

(depth) max in the xz- plane: 

- for the circular contact: 

 

|𝑍0| =
𝑎

(𝑡+1)⋅√2𝑡−1
;                                                 (15) 

 

|𝑋0| =
𝑡

𝑡+1
⋅ √

2𝑡+1

2𝑡−1
⋅ 𝑎,                                                      (16) 

 

- for elliptical contact: 

 

 

|𝑍0| =
𝐷𝑥

2∙(𝑡+1)⋅√2𝑡−1
;                                                   (17) 

 

|𝑋0| =
𝑡

𝑡+1
⋅ √

2𝑡+1

2𝑡−1
⋅

𝐷𝑥

2
.                                                    (18) 

  

Results of calculations for the influence of microgeometry 

 

Below are the input parameters of microgeometry, materials and values of elliptic integrals of the 1st and 

2nd kinds for simplified calculation of stresses and strains of friction point contacts (respectively for circular and 

elliptic contacts) in the range α ≤ 100 (Table 1) for two selected bearings. 
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Table1 

The input parameters of microgeometry, materials and values of elliptic integrals of the 1st and 2nd kinds 

Input and initial design parameters 
Сircular contact,  

α = 1 

Elliptical contact,  

α = 6 

1. The reduced radius of curvature, Rx, mm 6,35 15,24 

2. Ellipticity parameter, k 1 5 

3. Ellipticity parameter of the 1st kind, 

 𝜓 =
𝜋

2
+ (

𝜋

2
− 1) ∙ 𝑙𝑛𝛼 

1,5708 2,5935 

4. Ellipticity parameter of the 2nd kind, 

 𝜀 = 1 + ((
𝜋

2
− 1) 𝛼⁄ ) 

1,5708 1,0951 

5. Auxiliary parameter t 1,307 1,070 

6. Modulus of elasticity E1, Pа 2,07 ⋅ 1011 2,07 ⋅ 1011 

7. Modulus of elasticity E2, Pа 0,757 ⋅ 1011 0,757 ⋅ 1011 

8. Poisson's ratio υ1 0,30 0,30 

9. Poisson's ratio υ2 0,25 0,25 

 

The results of a simplified calculation of the maximum contact stresses, deformations, maximum tangential 

subsurface stresses and its position in the xz - plane with an increase in the applied load for two bearing units with 

different microgeometry of contact are presented graphically in Fig. 4 - 8. 

 

 
Fig. 4. Influence of microgeometry in the point contact 

zone on the deformation δ of contacting friction surfaces 

of bearing units with increasing load F 

Fig. 5. Influence of microgeometry in the point contact 

zone on the change in contact stress σ for friction 

bearing units with increasing load F 

 

 
 

 
Fig. 6. Effect of microgeometry in the point contact zone  on the change in tangential stress τ for friction bearing units 

with increasing load F 
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Fig. 7. Influence of microgeometry on the position of 

penetration of tangential stresses τ in the subsurface zone of 

point contact along the depth z - (μm) for friction bearing 

units with increasing load F 

Fig. 8. Influence of microgeometry on the position of 

penetration of tangential stresses τ in the subsurface zone of 

point contact along the rolling direction x - (μm) for friction 

bearing units with increasing load F 
 

 

Conclusions 

 

An alternative method of calculation to the classical Hertz solution for local stresses and strains of two 

elastic contacting bodies is presented, i.e., the need to solve transcendental equations to establish the influence of 

microgeometry in the contact zone is eliminated. 
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Міланенко О.А. Вплив мікрогеометрії в зоні точкового контакту на втомну довговічність в умовах 

тертя спокою для підшипникових вузлів тертя.  

Представлена альтернативна методика розрахунку класичному рішенню Герца для локальних 

напружень і деформацій двох пружних контактуючих тіл, тобто, усувається необхідність вирішувати 

трансцендентні рівняння для встановлення впливу мікрогеометрії в зоні контакту. 

За допомогою спрощених формул можна безпосередньо розрахувати максимальні контактні 

напруження, деформації, підповерхневі дотичні напруження, а також їх положення по глибині та за 

напрямом кочення та встановити вплив мікрогеометрії. 

Максимальні контактні й дотичні напруження, а також максимальні деформації прогнозовано вище 

за величиною для упорних (осьових) кулькових підшипниках з коловим контактом тертя в порівнянні з 

радіальними підшипниками, які мають еліптичну форму контакту. 

Для радіальних підшипників кочення з характерною еліптичною формою контакту положення 

проникнення дотичних напружень по глибині (вісь z) значно перевищує дане положення для упорних 

(осьових) підшипників з коловим контактом при рівних умовах дослідження, що опосередковано вказує 

на меншу втомну довговічність радіальних підшипників у зв’язку з нерівномірним розподіленням тиску в 

зоні локального контакту. 

Ключові слова: Точковий контакт тертя, втомна довговічність, підшипники кочення, максимальні 

контактні напруження, максимальні дотичні напруження, мікрогеометрія, тертя спокою. 
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Abstract 

 

Fractogram analysis shows that deep scratches, particles of titanium and chromium carbides and other 

elements were found on the friction surfaces. Moreover, in the braking devices there was damage to the large size 

of the brake pads of trucks. The transfer of particles of borides and carbides to the surface of the wheels can be 

explained by the processes of metal flooding with their subsequent embrittlement, which inevitably leads, as a 

rule, to the destruction of friction wheel pairs. It is established that such types of wear as fretting corrosion 

significantly (by 1.5-2 times) reduce the fatigue limit of parts. Also significantly reduce the cyclic strength of metal 

friction pairs oxide films on their surface in the absence of lubricant. The service life of friction wheel pairs has a 

particularly strong impact on fatigue strength. The main reason for the decrease in endurance due to the processes 

of setting on the working surfaces of friction units is a high concentration of stresses caused by deep tears, cuts, 

microcracks. The process of destruction of brake pads from fatigue begins from the surface of the part. In this 

regard, the quality of the surface, its structural-phase composition, physical and mechanical properties of the 

surface layer in most cases are decisive for the intensity of the development of wear processes of parts from fatigue 

of the tribosystem (friction wheel pairs), which are operated under cyclic loads. The peculiarity of the influence 

of friction and wear processes on the fatigue strength of metal is that at the time of running-in there is a change in 

surface roughness, structure and properties of surface layers. As the analysis of literature sources has shown, the 

effectiveness of the influence of friction and wear processes on the characteristics of fatigue resistance in the case 

of repeatedly alternating (cyclic) loads is essential, and therefore ignoring this effect during the traditional 

assessment of the reliability of parts by individual criteria, for example, wear resistance, often leads to an incorrect 

assessment of the operational durability of the elements of the tribological system of road or rail transport. The 

long-term (cyclic) strength of brake pads was determined on a specialized unit model 1251 by Instron company 

(Great Britain). The basis for spraying and surfacing of different types of coatings was normalized steel 35. 

Tensile-compressive deformations at zero average stress and a cycle frequency of 20 Hz were studied on the 

laboratory unit. Most of the tests were carried out in salt solutions (NaCℓ of industrial purity was used).The process 

of destruction of brake pads from fatigue begins with the surface of the part. In this regard, the quality of the 

surface, its structural-phase composition, physical and mechanical properties of the surface layer in most cases are 

decisive for the intensity of the development of wear processes of parts from fatigue of the tribosystem (friction 

wheel pairs), which are operated under cyclic loads. Endurance limits in the case of simultaneous exposure to 

friction forces and cyclic loads will depend on the sliding speed of the tangent surfaces of the normal contact load, 

which determines the friction force, and the composition of the environment.  

 

Keywords: fractograms, friction, destruction, wear, structural-phase composition, physical and mechanical 

properties, wheel pair, tribology, cyclic strength, microcracks. 

 

Introduction 

 

Currently, the industrial industry of Ukraine faces the problem of creating the basic foundations for the 

development of transport technology, in particular, the issues of friction and wear in transport machines. The 

relevance is due to the fact that the current state of development of technology is characterized by harsh operating 

http://creativecommons.org/licenses/by/3.0/
http://tribology.khnu.km.ua/index.php/ProbTrib
https://doi.org/10.31891/2079-1372-2023-107-1-13-19
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conditions of various transport systems, which is associated with an increase in: specific loads; increase in power; 

speed; the effect of complex loads of static cyclic and dynamic nature; the influence of various corrosive 

environments and temperatures. It is known from operational practice that the violation of normal functioning or 

complete failure of technical systems by 70-80% is caused by the failure of elements of their tribosystems due to 

surface destruction as a result of wear and other related processes - erosion, fretting, etc. Therefore, increasing the 

durability of friction units has been and remains one of the most important technical problems of our time in terms 

of increasing the reliability and extending the service life of transport machines. Despite the large volume of 

publications on this subject, it can be noted that the diversity of a large amount of experimental material, 

uncertainty and inconsistency of information about the tribological properties of the material involved in friction 

and wear pairs leads to the need to find additional resources to improve the wear resistance of brake pads, in 

particular transport trucks. 

Therefore, we have conducted additional studies of the friction properties of brake pads in the conditions 

of experimental benches that were closest to the real kinematic and dynamic conditions of operation of transport 

trucks. 

 

The purpose and objectives of the study – conducting systematic experimental studies of the frictional 

properties of brake linings made of different materials. 

 

Materials and methods of the study 

 

In the experiments, an improved unit of the MFK-1 model was used, which is schematically shown in 

Figure 1, (which does not show the information system for determining the necessary information and computer 

processing). To select the material of brake linings, express dry friction tests were carried out together with the 

specialists of NPO "Powder Metallurgy" and the Institute of Electric Welding named after E.O. Paton of the 

National Academy of Sciences of Ukraine (a possible case of braking wheelset operation in dry friction mode was 

simulated on the stand).Tests of samples of coated linings for wear resistance at dry friction were carried out for 

45 minutes at a specific pressure of 0.6 MPa and a counterbody rotation speed of 80 min-1, the counterbody was 

a disk made of hardened steel 40HN. The reference sample of brake linings was steel 45. The lining was made of 

three types: FMK-8 - metal-ceramic friction (based on iron); "carbon - carbon" - composite materials CCCM and 

powders of eutectic alloys of the ТН system (for coating used powders of eutectic alloys of the 12Х18Н9Т-ТіВ 

system).Moreover, it should be noted that the metal matrix of the alloy corresponds to steel 12X18H9T, and the 

strengthening compounds are titanium and chromium borides. Spraying was carried out by plasma method. The 

fractograms of the friction surface, which were subjected to wear, were studied by X-ray spectral analysis using a 

scanning electron microscope model "JSM-35CF" of the company "Geol" (Japan).  

 
 

Fig.1. Schematic diagram of MFKU-1 unit:  

1 - horizontal connecting rod, 2 - vertical connecting rod, 3 - adjustable eccentric, 4 - coupling, 5 - electric 

motor, 6 - counter of the number of cycles, 7 - pressure gauge, 8 - inspection window, 9 - collet, 10 - loading 

device, 11 - strain beam, 12 - seal, 13 - camera, 14 - fixed sample, 15 - moving sample. 

 

Long-term (cyclic) strength of brake pads was determined on a specialized model 1251 unit of the Instron 

company (Great Britain). Normalized steel 35 served as the basis for filing and surfacing various types of 

coatings.Tensile-compressive deformations at zero average stress and a cycle frequency of 20 Hz were studied on 

a laboratory unit. Most of the tests were carried out in salt solutions (NaCℓ of industrial purity (above 99%) was 

used).  

The results of experimental studies are shown in Figures 2-10. 
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Fig.2. Microstructure of plasma TN coating (cross grinding - base carbon steel U7 - х400). 

 

 
 

Fig.3. Microstructure of plasma coating of TN type (general view of the coating surface - base steel 35 (x500)) 

 

 
 

Fig.4. Microstructure of plasma deposited TN coating (x300). Titanium boride inclusions are circled. 

 
 

Fig. 5. Fractogram of the surface with surfacing composite coating CCCM. Base - steel 45 

The results of tests of brake pads for cyclic (long-term) strength are shown in Figures 6 and 7. 
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Fig.6. Cyclic strength (fatigue) curves of carbon steel 35 samples.  

1 - unused steel; 2 - service life is 5 years; 3 - service life is 10 years; 4 - service life is 15 years; 5 - service life is 

20 years. 

 
 

Fig.7. Effect of fretting corrosion on fatigue (cyclic) strength of carbon normalized steel 35. 

1 - fatigue curve without fretting corrosion (service life is 5 years); 2 - fatigue curve without fretting corrosion 

(service life is 10 years); 3-5 - fatigue curves with fretting corrosion (service life is 5, 10 and 15 years, respectively). 

 

The process of destruction of brake pads from fatigue begins with the surface of the part. In this regard: the 

quality of the surface; its structural-phase composition; physical and mechanical properties of the surface layer in 

most cases are decisive for the intensity of the development of wear processes of tribosystem parts (friction wheel 

pairs) from fatigue, which are operated under cyclic loads. Many parts of motor vehicles operate in such conditions. 

A feature of the influence of friction and wear processes on the fatigue strength of metal is that at the time of 

running-in, there is a change in surface roughness, structure and properties of surface layers. As the analysis of 

literary sources [18,19,20] has shown, the effectiveness of the influence of friction and wear processes on the 

characteristics of fatigue resistance in the case of repeatedly variable (cyclic) loads is essential, and therefore 

ignoring this effect during the traditional assessment of the reliability of parts according to certain criteria, for 
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example, wear resistance, often leads to an incorrect assessment of the operational durability of elements of the 

tribological system of road or rail transport. 

The endurance limits in the case of simultaneous exposure to friction forces and cyclic loads will depend 

on: sliding speed; contact surfaces; normal contact load, which determines the friction force; composition of the 

environment.  

The data of Figure 6 shows that such types of wear as fretting corrosion significantly (by 1.5-2 times) reduce 

the fatigue limit of parts. Also significantly reduce the cyclic strength of metal friction pairs oxide films on the 

surface of friction pairs in the absence of lubricant. Especially strong influence on fatigue strength has the service 

life of friction wheel pairs (Fig.6). 

The main reason for the decrease in endurance due to the processes of setting on the working surfaces of 

friction units is a large concentration of stresses caused by deep tears, cuts, microcracks (Fig.2 and 5). 

The decrease in fatigue strength of steel 35 is characterized by the data in Figure 7. According to the 

recommendations of Prof. Kindrachuk M.V. [19], if we extrapolate the fretting fatigue curves to the abscissa axis 

corresponding to the limited endurance based on N=107 cycles, and then project the intersection points onto the 

fatigue curve without fretting corrosion, we obtain the value of the equivalent stress. The higher the values of these 

equivalent stresses compared to the nominal stress, the more fatigue (cyclic) strength is reduced by fretting 

corrosion. 

So, for example, according to the curves, we have the following σeq value: σ2 = 255MPa; σ3 = 151MPa; 

σ4 - 248MPa; σ5 = 245MPa (σ-1 = 200MPa), that is, the excess of equivalent stresses over σ-1 is in the range from 

20 to 40%. 

Analysis of the fractograms presented in Figures 3 and 4 shows that deep scratches, particles of titanium 

and chromium carbides and other elements were found on the friction surfaces. Moreover, in the braking devices 

there was damage to the large size of the brake pads of trucks. The transfer of particles of borides and carbides to 

the surface of the wheels can be explained by the processes of flooding the metal with their subsequent 

embrittlement, which inevitably leads, as a rule, to the destruction of friction wheel pairs. 

 

Conclusions 

 

1. Fractogram analysis shows that deep scratches, particles of titanium and chromium carbides and other 

elements were found on the friction surfaces. Moreover, in the braking devices there was damage to the large size 

of the brake pads of trucks. The transfer of particles of borides and carbides to the surface of the wheels can be 

explained by the processes of flooding the metal with their subsequent embrittlement, which inevitably leads, as a 

rule, to the destruction of friction wheel pairs. 

2. It is established that such types of wear as fretting corrosion significantly (by 1.5-2 times) reduce the 

fatigue limit of parts. Also significantly reduce the cyclic strength of metal friction pairs oxide films on their 

surface in the absence of lubricant. The service life of friction wheel pairs has a particularly strong impact on 

fatigue strength. The main reason for the decrease in endurance due to the processes of setting on the working 

surfaces of friction units is a high concentration of stresses caused by deep tears, cuts, microcracks. 

3. The process of destruction of brake pads from fatigue begins with the surface of the part. In this regard, 

the quality of the surface, its structural-phase composition, physical and mechanical properties of the surface layer 

in most cases are decisive for the intensity of the development of wear processes of parts from fatigue of the 

tribosystem (friction wheel pairs), which are operated under cyclic loads. The peculiarity of the influence of 

friction and wear processes on the fatigue strength of metal is that at the time of running-in there is a change in 

surface roughness, structure and properties of surface layers. As the analysis of literature sources has shown, the 

effectiveness of the influence of friction and wear processes on the characteristics of fatigue resistance in the case 

of repeatedly alternating (cyclic) loads is essential, and therefore ignoring this effect during the traditional 

assessment of the reliability of parts by individual criteria, for example, wear resistance, often leads to an incorrect 

assessment of the operational durability of the elements of the tribological system of road or rail transport. 

4. The long-term (cyclic) durability of brake pads was determined on a specialized installation model 1251 

of the company "Instron" (Great Britain). The basis for spraying and surfacing of different types of coatings was 

normalized steel 35. On the laboratory unit was investigated under tensile-compressive deformation at zero 

average stress and cycle frequency of 20 Hz. Most of the tests were carried out in salt solutions (NaCl of industrial 

purity was used. 
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Макаренко В. Д., Клюєв О. І., Войтович О. А., Мєшков Ю. Є., Макаренко Ю.В. Дослідження 

фрикційних властивостей, тривалої (циклічної) міцності матеріалів гальмових колодок автотранспорту 

 

Аналіз фрактограм показує, що на поверхнях тертя було виявлено глибокі подряпини, частинки 

борідів (карбідів) титану і хрому та інших елементів. Причому, у гальмових пристроях мали місце 

пошкодження великих розмірів гальмових колодок вантажних автомобілів. Перенесення частинок борідів 

та карбідів на поверхню коліс можна пояснити процесами наводнення металу з подальшим їх 

окрихченням, що неминуче спричиняє, як правило, руйнування колісних пар тертя. Встановлено, що такі 

види зношування як фретинг-корозія значно (в 1,5-2 рази) знижують межу втоми деталей. Також значно 

знижують циклічну міцність металу пар тертя оксидні плівки на їх поверхні у відсутності мастильного 

матеріалу. Особливо сильний вплив на втомну міцність має термін експлуатації колісних пар тертя. 

Основною причиною зниження витривалості внаслідок процесів схоплювання на робочих поверхнях 

вузлів тертя є велика концентрація напружень, спричинена глибинними виривами, надрізами, 

мікротріщинами. Процес руйнування гальмових колодок від втоми починається з поверхні деталі. У 

зв’язку з цим якість поверхні, її структурно-фазовий склад, фізико-механічні властивості поверхневого 

шару у більшості випадків є визначальним для інтенсивності розвитку процесів зношування деталей від 

втоми трибосистеми (колісних пар тертя), які експлуатуються в умовах циклічних навантажень. 

Особливість впливу процесів тертя та зношування на втомну міцність металу полягає в тому, що в момент 

припрацювання відбувається зміна шорсткості поверхні, структури і властивостей поверхневих шарів. Як 

показав аналіз літературних джерел, ефективність впливу процесів тертя і зношування на характеристики 

опору втоми в разі повторно-змінних (циклічних) навантажень мають істотне значення, а тому ігнорувати 

цим ефектом під час традиційного оцінювання надійності деталей за окремими критеріями, наприклад, 

зносостійкості приводить часто до невірної оцінки експлуатаційної довговічності елементів трибологічної 

системи автомобільного чи залізничного транспорту. Тривалу (циклічну) міцність гальмових колодок 

визначали на спеціалізованій установці моделі 1251 фірми “Інстрон” (Великобританія). Основою для 

напилювання і наплавлення різних типів покриттів слугувала нормалізована сталь 35. На лабораторній 

установці досліджували деформації розтягування – стискання при нульовому середньому напруженні і 

частоті циклів 20Гц. Більшість випробувань проводили в розчинах солі (використовували NaCℓ 

промислової чистоти). Процес руйнування гальмових колодок від втоми починається з поверхні деталі. У 

зв’язку з цим якість поверхні, її структурно-фазовий склад, фізико-механічні властивості поверхневого 

шару у більшості випадків є визначальним для інтенсивності розвитку процесів зношування деталей від 

втоми трибосистеми (колісних пар тертя), які експлуатуються в умовах циклічних навантажень. Межи 

витривалості в разі одночасного впливу сил тертя і циклічних навантажень будуть залежати від швидкості 

ковзання дотичних поверхонь нормального контактного навантаження, яке визначає силу тертя, і складу 

навколишнього середовища.  

 

Ключові слова: фрактограми, тертя, руйнування, зношування, структурно-фазовий склад, фізико-

механічні властивості, колісна пара, трибологія, циклічна міцність, мікротріщини. 
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Abstract 

 

The paper examines the method of conducting tribological studies in the dry mode of friction of nitrided 

and unhardened structural steels 20 and 45 in order to achieve comparable results of laboratory tests with 

operational characteristics. Preliminary studies of anodized steels of the same steels indicate that under conditions 

of extreme friction it is extremely difficult, and in some cases impossible, to use such values of specific pressure 

on the friction surface, at which it would be realistic to compare the results obtained for different samples made of 

different brands materials and processed using various technological processes. Since during the tests, constant 

lubrication of the friction zone was ensured, a layer of lubricant was present on the friction surface up to a certain 

pressure value, which led to extremely small indicators of linear wear. However, depending on the characteristics 

of the modified surface, there was a critical value of pressure at which the layer of lubricant was squeezed out of 

the friction zone, which led to instant adhesion of the surfaces. Thus, the study of wear resistance in the dry mode 

of friction ensures a significantly higher productivity of experiments. 

Unlike experiments with limit friction, dry friction can be used for different steels at the same pressure 

value, which eliminates the problem of comparability of results and contributes to the objectivity of conclusions 

regarding the effectiveness of various modification processes.  

According to the results of previous experiments, such a compromise pressure value can be 16 MPa. 

Another important phenomenon for the analysis of the influence of the modification results on the wear 

resistance characteristics of the surface is established - the effect of relaxation processes in the near-surface layers, 

which have already acquired structural transformations under the influence of pressure in the friction zone.  

For all steels, there is some slowing down of the intensity of wear after a break with a gradual return to the 

intensity characteristic of a certain brand of steel. The reason for such a phenomenon can only be the relaxation of 

stresses and the equalization of the characteristics of the structure in the near-surface layers. At the same time, the 

result is the strengthening of the surface, which explains the decrease in the intensity of the wear process. over 

time, as the strengthened layer breaks down, the indicators of the surface condition become equal to those before 

the break and the intensity of wear is restored.  

 

Key words: nitriding, dry friction, limit friction, wear. 

 

Statement of the problem and analysis of the latest research 

 

The metal surface should be considered as a special variety of defects that destroys the periodicity of the 

solid body. This thesis is confirmed by the fact of significant acceleration of chemical reactions in the presence of 

solid catalysts on the surface. The boundary layer, the structure of which differs from the base of the solid body, 

can interact more actively with external factors that stimulate surface modification. At the same time, it is the 

presence of a real surface that is the stimulus due to which most of the physical or chemical processes of the 

interaction of a solid body with the environment take place. 

The near-surface layer should be considered as a three-dimensional structure, which differs from the solid 

body itself, since within several atomic layers it may include atomic nodes different from the atomic nodes of the 

main volume. However, one should not forget that the near-surface layer is a crystalline structure for which two-

dimensional periodicity is preserved. Thus, violation of the indicated natural periodicity of near-surface layers 

http://creativecommons.org/licenses/by/3.0/
http://tribology.khnu.km.ua/index.php/ProbTrib
https://doi.org/10.31891/2079-1372-2023-107-1-20-24


Problems of Tribology 21 

 

inevitably affects all characteristics of the surface as a whole, including its ability to resist wear. This circumstance 

was noted to a greater or lesser extent in classic works on tribology, but there is no coverage of the research results, 

on the basis of which it would be possible to form practical methods of experiments to find the tribological 

characteristics of the wear resistance of metals. 

It is known that during the adsorption of gases, a monomolecular adsorption layer is formed - a monolayer, 

and the degree of integrity of the monolayer at low pressure values is proportional to the adsorbate pressure in the 

gas medium. If gas molecules, in the presence of a strong chemical or physical bond, do not have the opportunity 

to move on the surface, then we get localized adsorption with the formation of an adsorption complex. 

Chemisorbed and physically sorbed gas particles on the surface differ in the type of electronic bond between 

the adsorbate and the base. If the electronic state of the adsorbed molecule undergoes significant changes up to the 

formation of chemical bonds with the surface, then we are talking about chemisorption. If the molecule is held on 

the surface by van der Waals forces, then this type of adsorption refers to physical adsorption. The upper limit for 

physical adsorption is only 0.6 eV. The chemisorption energy is usually within 1...8 eV [1]. If the energy of a 

molecule of the external environment is several electron volts, then it will already be able to overcome the potential 

barrier of the near-surface layer and the conditions for chemical sorption or chemical reaction appear [2]. It is 

obvious that the mechanical impact on the surface changes the parameters of adsorption phenomena, which also 

affects the wear processes. 

From the above follows the conclusion about the importance of taking into account the parameters of the 

wear process on the objectivity of the results of the conducted research. This especially applies to their analysis 

and formation of practical recommendations. 

The work [3] analyzed the results of research on wear resistance, which were obtained under conditions of 

extreme friction. The main conclusion from the analysis was that any wear process is a combination of successive 

compaction of near-surface layers and their removal. At the same time, the test parameters are of decisive 

importance, which must be selected taking into account the material and the preliminary treatment of the surface. 

The results of the experiments show that, under conditions of extreme friction, it is extremely difficult, and in 

some cases impossible, to use such values of the specific pressure on the friction surface, at which it would be 

realistic to compare the results obtained for different samples, made of different grades of materials and processed 

with various technological processes. Since during the tests, constant lubrication of the friction zone was ensured, 

a layer of lubricant was present on the friction surface up to a certain pressure value, which led to extremely small 

indicators of linear wear. However, depending on the characteristics of the modified surface, there was a critical 

value of pressure at which the layer of lubricant was squeezed out of the friction zone, which led to instant adhesion 

of the surfaces. The presence of compaction and structural transformations of the surface is evidenced by the fact 

that with a gradual increase in pressure, it was possible to reach relatively high values of the critical pressure. An 

attempt to immediately conduct tests on new samples at a pressure close to these critical values inevitably caused 

seizure of the surfaces. The reason for such a phenomenon could only be the gradual compaction of the surface 

and its strengthening associated with a change in the structure of the near-surface layer. The above and the 

impossibility of an objective comparison of test results obtained at different pressures explain the need to switch 

to the scheme of experiments with dry friction. 

 

The purpose of the work is to develop the methodology and criteria for the evaluation of experimental 

studies of the wear resistance of samples after nitriding in the cyclically switched discharge (CSD) in order to 

achieve the results of laboratory tests that correspond to the real conditions of operation of the parts. 

 

Methods of conducting experimental research 

 

In order to ensure the independence of the energy parameters of the regime without hydrogen nitriding in 

the glow discharge (HNGD), the installation was modernized: a block of heating elements was installed in the gas 

discharge chamber, and a power supply unit from an independent source and also a switching and control unit of 

the cyclically switched discharge were added to the electrical circuit. 

Experimental studies of samples for wear resistance were carried out on a universal machine for testing 

materials for friction, model 2168УМТ. The friction scheme is “disc – finger”; contact type – plane-on-plane 

sliding (the end of the cylindrical sample slides on a flat metal disk; the material of the counterbody is steel 100Cr6 

with a base hardness of HRC61; pressure in the contact zone p = 16 MPa; sliding speed v = 0.1 m/s [4]. 

To check the possibility of further comparison of wear processes, objects with significantly different surface 

characteristics were selected: soft surfaces are represented by samples from steel C22 without modification, 

modified - from steel C45 after nitriding in a glow discharge. The latter before nitriding had a surface hardness of 

HV0.1 215, after modification HV0.1 700...730 [5]. 

The controlled parameter is linear wear h, which was determined as a change in the linear size of the sample, 

measured normal to the friction surface, as a result of passing a section of length l. 

BATR was carried out on an industrial unit of УАТР, which corresponds to the diode-type model. A power 

supply unit from an independent source, as well as a switching and control unit for a cyclically switched discharge, 

have been added to the scheme. In addition, the installation is additionally equipped with heating elements placed 

in the gas discharge chamber, which made it possible to arbitrarily change the energy parameters - the voltage U, 
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and the value of the current density ϳ (the ratio of the current to the total area of the cage and suspension) [6]. 

Metallographic studies of nitrided samples were performed after etching in a 3% alcoholic solution of nitric 

acid. The thickness of the nitride zone was measured on an RX50M microscope. Microhardness was determined 

on a DuraScan-20 microhardness tester under a load of 1.0 N, with fixation of microhardness values both on the 

surface and at a distance from it of 0; 25; 50; 100; 200; 300; 500 microns. 

The thickness of the nitride zone was measured using a MIM-10 microscope, which allows quantitative 

analysis of the phase and structural composition of nitrided surfaces. 

X-ray phase analysis of nitrided samples was performed on a ДРОН-3 diffractometer in filtered radiation 

of an iron anode in the range of q angles from 20° to 100° with a scan step of 0.1° and an exposure time of 10 s. 

X-ray imaging was carried out from the surface to the depth of the nitrided layer.  

 

Presentation of the main material and received scientific research 

 

The results of preliminary tests are shown in Figure 1. It follows from Figure 1 that in the dry friction mode, 

the intensity of the wear process increases significantly, which means a significant increase in the productivity of 

experimental studies. Thus, one experiment in the mode of extreme friction lasted for weeks, and in the dry mode 

it was possible to perform it in several shifts. In addition, the thesis regarding the decisive influence of pressure 

on the intensity of wear on the friction surface was confirmed: the same indicators of linear wear d were achieved 

with an increase in pressure with a significantly smaller friction path L. The brand of the material and the initial 

values of its physical and mechanical indicators in combination with the available modification surfaces also 

significantly influenced the intensity of wear. Thus, for steel 41CrAlMo7 nitrided in the glow discharge, the 

intensity of wear is almost an order of magnitude lower compared to steel С22. Similar data were obtained in [7]. 

 

 
 

Fig. 1. Dependence of linear wear on the path of friction and pressure: 1 – steel С22, p=16 MPa; 2 – steel С45, p=16 

MPa; 3 - steel С22, p=10 MPa; 4 – steel 41Cr4, p= 16 MPa; 5 – steel С45, p= 10 MPa; 6 – steel 41CrAlMo7, p= 16 

MPa 

In contrast to the methodology of experimental research with extreme friction, in the dry friction mode, 

results can be achieved at the same pressure values for almost all steels, which excludes the issue of comparability 

when analyzing the results of research. The importance of this provision is evidenced by the comparison of wear 

curves for the same steels at different pressure values (Figure 1). Since the same value of linear wear for the same 

material, but at different pressures, is achieved with significantly different values of the friction path, establishing 

the relationship between the listed factors would pose a certain problem. 

Curves in fig. 1 also confirm the effect on the wear intensity of the physical and mechanical parameters of 

the surface and its modification. Thus, steels with higher physico-chemical characteristics (41Cr4 and 

41CrAlMo7), as well as steels that have undergone a certain modification treatment, wear out under the same 

conditions (pressure and speed of relative movement) with a lower intensity of wear, which in the graphs 

corresponds to the angle of their inclination. 

The effect of structural transformations of the surface is confirmed by Figure 2, which shows the results of 

fixation of linear wear with a small interval of the friction path. The wear schedule in this case is a stepped curve 

of periods of formation of strengthened structures on the surface, when wear is practically absent, and periods of 

destruction of these surface structures. 
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Fig. 2. Character of surface wear in the initial period: 1 - steel C22, 2 - steel 41Cr4, 3 - steel 41CrAlMo7 

 

For modified surfaces, this phenomenon is especially characteristic in the initial period, when the nitride 

and internal nitriding zone wears out. 

  Another important phenomenon for the analysis of the influence of the modification results on the wear 

resistance characteristics of the surface is established - the effect of relaxation processes in the near-surface layers, 

which have already acquired structural transformations under the influence of pressure in the friction zone. 

Black dots on curves 2, 4, 6 show the points when wear resistance tests were suspended and resumed the 

next day (Figure 3). For all steels, a certain slowdown in wear intensity is noted after a break with a gradual return 

to the intensity characteristic of a certain brand of steel (Figure 3). The reason for such a phenomenon can only be 

the relaxation of stresses and the equalization of the characteristics of the structure in the near-surface layers. At 

the same time, the result is the strengthening of the surface, which explains the decrease in the intensity of the 

wear process. over time, as the strengthened layer breaks down, the indicators of the surface condition become 

equal to those before the break and the intensity of wear is restored. 

 

 
 
Fig. 3. Effect of relaxation structural transformations of the surface: 1, 2 – steel C22; 3, 4 – steel 41Cr4; 5, 6 – 

steel 41CrAlMo7 (points for stopping the tests are marked with dots) 

 

Conclusions 

 

Thus, the study of wear resistance in the dry mode of friction ensures a significantly higher productivity 

of experiments. Unlike experiments with limit friction, dry friction can be used for different steels at the same 

pressure value, which eliminates the problem of comparability of results and contributes to the objectivity of 

conclusions regarding the effectiveness of various modification processes. According to the results of previous 

experiments, such a compromise pressure value can be 16 MPa. The effect of relaxation transformations of surface 

structures has been established, on the basis of which it is recommended to carry out research on wear resistance 
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during one continuous session. 

 

References 

 
1. Woodruff D. Modern methods of surface research; ed. V. I. Rakhnovsky / D. Woodruff, T. Delchar. 

- M. : Mir, 1989. - 564 p. 
2. Pleshivtsev N.V. Cathode sputtering / N.V. Pleshivtsev - M. : Atomizdat, 1998. - 343 p. 
3. M.S. Stechyshyn, V.V. Lyukhovets, N.M. Stechyshynа, M.I. Tsepenyuk. Wear resistance of structural 

steels nitroded in cyclic-commuted discharge at limit modes of friction. // Problems of Tribology. – 
Khmelnytskyi: KHNU, 2022. – V. 27. - №3/105. – P.27-33. 

4. Stechishina N.M. Influence of the parameters of hydrogen nitrogen nitrogen in a glow discharge on 
tribological and physico-chemical properties of steel 40X / N.M. Stechishina, M.S. Stechyshyn, A.V. Martynyuk, 
N.V. Lukianyuk, V.V. Lyukhovets, Yu.M. Bilyk // Problems of Tribology. – Khmelnytskyi: KHNU, 2021. – V. 
26 - №3/101. – P.31-41. 

5. Stechyshyn N.M., Stechyshyn M.S., Mashovets N.S. Corrosion-mechanical wear resistance of food 
production equipment parts: monograph / N.M., Stechyshina, M.S. Stechyshyn, N.S. Mashovets – Khmelnytskyi: 
KhNU, 2022.-181 p. 

6. M. S. Stechyshyn, M. Ye. Skyba, N. M. Stechyshyna,  and A. V. Martynyuk. STRESS-CORROSION 
WEAR OF NITRIDED STEELS IN ACID MEDIA. Mater. Sci., Vol. 58, No. 2, September, 2022. Р.121-126. 

7. Skyba M. Physico-chemical and tribological properties of nitrogened layers of structural steel / M. 

Skyba, M. Stechyshyn, N. Stechyshyna, A. Martynyuk, V. Lyukhovets // Actual problems of modern science. 

Monograph: Bydgoszcz, Poland– 2021. – P.488-499. 

 

 

 

 

 

 

 

 

 

 

 

 

Стечишин М.С., Скиба М.Є., Мартинюк А.В., Здоренко Д.В. Зносостійкість конструкційних 

сталей, азотованих в циклічно-комутованому розряді при сухому терті. 

У роботі розглянута методика проведення трибологічних досліджень при сухому режимі тертя 

азотованих і незміцнених конструкційних сталей 20 і 45 з метою досягнення порівнюваних результатів 

лабораторних випробувань з експлуатаційними характеристиками. Попередньо проведені дослідження 

аотованих цих же сталей свідчать про те, що в умовах граничного тертя надзвичайно важко, а в деяких 

випадках неможливо використовувати такі значення питомого тиску на поверхню тертя, при яких 

реальним було б співставлення результатів, одержаних для різних зразків, виготовлених з різних марок 

матеріалів та оброблених за допомогою різних технологічних процесів. Оскільки в ході випробувань 

забезпечувалось постійне змащування зони тертя, то до певного значення тиску на поверхні тертя був 

присутній шар мастила, що призводило до надзвичайно малих показників лінійного зношування. Проте в 

залежності від характеристик модифікованої поверхні існувало критичне значення тиску, при якому шар 

мастила витискувався із зони тертя, що приводило до миттєвого схоплювання поверхонь. Таким чином, 

дослідження зносостійкості при сухому режимі тертя забезпечує суттєво більшу продуктивність 

експериментів. На відміну від експериментів при граничному терті сухе тертя може застосовуватись для 

різних сталей при однаковому значенні тиску, що виключає проблему порівнянності результатів та сприяє 

об’єктивності висновків стосовно ефективності різних процесів модифікації.  За результатами попередніх 

експериментів таким компромісним значенням тиску може бути 16 МПа.  Встановлене ще одне важливе 

явище  для аналізу впливу результатів модифікації на характеристики зносостійкості поверхні - ефект 

релаксаційних процесів в приповерхневих шарах, які вже набули структурних перетворень під дією тиску 

в зоні тертя. Для всіх сталей відмічається деяке сповільнення інтенсивності зношування після перерви з 

поступовим поверненням до інтенсивності, характерної для певної марки сталі. Причиною такого явища 

може  бути лише релаксація напружень і вирівнювання характеристик структури в приповерхневих шарах. 

При цьому наслідком є зміцнення поверхні, що і пояснює зниження інтенсивності процесу зношування. з 

часом, По мірі руйнування зміцненого прошарку, показники стану поверхні стають рівними з тими, що 

були до перерви і інтенсивність зношування відновлюється. 

 

Ключові слова: азотування, сухе тертя, граничне тертя, знос. 
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Abstract 

 

The paper further developed the methodological approach in obtaining mathematical models that describe 

the running-in of tribosystems under boundary lubrication conditions. 

The structural and parametric identification of the tribosystem as an object of simulation of running-in 

under conditions of extreme lubrication was carried out. It has been established that the processes of running-in of 

tribosystems are described by a second-order differential equation and, unlike the known ones, take into account 

the limit of loss of stability (robustness reserve) of tribosystems. It is shown that the nature of tribosystems running-

in conditions of extreme lubrication depends on the gain coefficients and time constants, which are included in the 

right-hand side of the differential equation.  

It is shown that the processes of running-in of tribosystems depend on the type of the magnitude of the 

input influence on the tribosystem, the first and second derivatives. The input influence is represented as a product 

of coefficients and a time constant К0·К2·Т3. This allows us to state that the processes of the tribosystem running-

in will effectively take place when the input action (load and sliding speed), will change in time and have 

fluctuations with positive and negative acceleration of these values from the set (program) value. This requirement 

corresponds to the running-in program "at the border of seizing". 

The left part of the equation is the response of the tribosystem to the input signal. Tribosystem time 

constants Т2 and Т3  have the dimension of time and characterize the inertia of the processes occurring in the 

tribosystem during running-in. Increasing the time constants makes the process less sensitive to changes in the 

input signal, the warm-up process increases in time, and the tribosystem becomes insensitive to small changes in 

load and sliding speed. Conversely, the reduction of time constants makes the tribosystem sensitive to any external 

changes. 

Keywords: tribosystem; running-in; mathematical model of running-in; differential equation; gain; time 

constant; boundary lubrication; quality factor of the tribosystem; robustness of the tribosystem; volumetric wear 

rate; coefficient of friction 

 

Introduction 

 

The running-in of tribosystems is the final technological stage in the production process of machines and 

the initial stage of operation of these machines. In the process of running-in, the tribosystems that make up the 

machine or unit form bearing surface layers, providing further maximum resource and minimum friction losses. 

An analysis of the publications of many researchers who are devoted to running in or running-in allows us to state 

that the completion of the running-in process is reduced not only to the formation of the optimal roughness of the 

mating friction surfaces. The running-in process includes physical and chemical phenomena, such as thermal, 

diffusion, deformation, which take place on actual contact spots in the presence of lubricating media and the 

environment. Therefore, reducing the running-in process, with a simultaneous decrease in wear for running-in and 

friction losses, will significantly increase the resource of machines and mechanisms, which will provide an 

economic effect during operation. 

An analysis of models of stationary processes and running-in processes in tribosystems shows that there 

is a large error in modeling the wear rate, up to 18,8%, and the friction coefficient, up to 16,0%. Such a scatter of 

data in measurements can be explained by the presence of an oscillatory process of wear rate and friction 

http://creativecommons.org/licenses/by/3.0/
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coefficient during the running-in of the tribosystem, as well as by the ambiguity of the choice of input parameters 

for modeling. Difficulties that arise in the development of such models are associated with the choice of parameters 

that affect the process under study. For example, the design of the tribosystem, the lubricating medium, the 

materials from which the triboelements are made, the roughness of the friction surfaces, the load-speed range of 

operation, etc. The listed parameters are random functions, which makes it difficult to build mathematical models.  

 

Literature review 

 

An overview work, which is devoted to the processes of running-in, can be considered the work [1]. In 

this paper, a system analysis and comprehensive studies of the running-in processes are carried out, on the basis 

of which the definition of the running-in process is formulated. According to the authors, this is a transient process, 

including a complex interaction between friction surfaces, lubrication, roughness, plastic deformation and wear. 

The running-in process involves changing key tribological parameters such as surface roughness, surface 

topography, coefficient of friction and wear rate until a steady state prevails. The paper provides a review of the 

literature on the running-in processes. 

The authors of the works [2-4] analysis of various types of running-in was carried out, where the change 

in the roughness of the friction surface during running-in is studied. For example, at work [2] developed a model 

for changing the roughness of friction surfaces as a function of time. The proposed model is non-linear, the optimal 

values of the model parameters were estimated using the Gauss-Newton algorithm. Experimental results taken 

from the literature for steel and alloy samples Cu-Zn were used to test the model and confirmed its information 

content. In works [3, 4], to reduce the running-in time, the initial roughness of the friction surface has been 

optimized. The authors established a correlation between the initial roughness and deformation processes of 

surface layers, showed ways to optimize the running-in of tribosystems. 

In works [5, 6] the processes of mechanical treatment of friction surfaces with the formation of optimal 

roughness and its influence on the mechanisms of plastic deformation of surface layers during running-in were 

studied. On the basis of experimental data, a model of wear during running-in has been developed and the fact of 

grain refinement of materials of surface layers has been established. 

The study of friction surfaces and the formation of films on them during the running-in process was 

carried out by the authors of the works [7-9]. The authors conclude that the change in friction and wear parameters 

that occur during running-in are not only the result of changes in surface roughness, but also the microstructure of 

the surface layers and the formation of a third body. The running-in process is described by piecewise models, 

which allow modeling not only roughness, but also the formation of a third body as a function of time. Authors of 

the work [8] claim that the running-in process can be controlled by changing the initial roughness and lubricating 

medium. For example, at work [9] the evolution of tribofilms on the friction surface during running-in is shown. 

Works [10, 11] devoted to the development of models for the running-in of tribosystems. For example, at 

work [10] the tribosystem is presented as a running-in attractor, which is a stable and time-ordered structure that 

is formed in the running-in process. The authors carried out a dispersion analysis of the characteristic parameters 

of the running-in attractors to identify primary and secondary factors that affect the running-in process. According 

to the authors, the developed models make it possible to predict the running-in process of tribosystems. In work 

[11] a two-scale model of the formation of the topography of the friction surface during running-in is presented. 

This model makes it possible to determine the stresses on the actual contact spots and optimize the running-in 

processes. 

The authors of the work [12] the analysis of the influence of the spectral load during the running-in of 

tribosystems was carried out. The results of experimental studies are discussed and a conclusion is made about the 

prospects of changing the load, along a given spectrum, during running-in. This approach improves the efficiency 

of running-in processes. 

A similar approach is presented in the work [13]. The authors developed and substantiated the structure 

of the tribosystems running-in program, which consists of two modes. In the first mode, the maximum load is set, 

below the “sticking” load at the minimum sliding speed. This mode allows, due to the intense deformation of 

microprotrusions, to form an equilibrium roughness of friction surfaces and change the structure of thin surface 

layers. The first mode is called the adaptation of the tribosystem to external conditions. The second mode sets the 

minimum load and maximum sliding speed. This mode allows to reduce the time of restructuring of the material 

structure of the surface layers and to complete the formation of secondary structures and oxide films. The second 

mode is called the trainability and trainability of the tribosystem. The paper presents the transient characteristics 

of the running-in of tribosystems, which make it possible to establish the relationship between the design of the 

tribosystem, rational loading modes, running-in time and wear for running-in. The practical significance of the 

work is to minimize the run-in time and wear during the run-in period. 

Summing up the analysis of works devoted to the running-in processes, we can conclude that the novelty 

of this study is the development of a mathematical model of the running-in process of tribosystems, which will 

allow modeling the change in wear rate and friction coefficient over time. The study of such processes will make 

it possible to substantiate the running-in regimes and reduce running-in wear and running-in time, as well as 

develop a program for effective running-in of various designs of tribosystems. Such models should determine the 

boundary of the stable operation of the tribosystem, i.e. the boundary of the tribosystem exit to the scoring or the 
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boundary, when the accelerated wear of the materials of the triboelements begins [14]. Accounting for such 

regimes will improve the efficiency of modeling the running-in processes of tribosystems. 

 

Purpose  
 

The purpose of this study is to develop a mathematical model of running-in processes in tribosystems in 

the form of a differential equation and its solutions, which will allow modeling the wear rate and friction coefficient 

over time, taking into account the robustness range. 

 

Methods 

 

The structural identification of the mathematical model of tribosystems running in conditions of extreme 

lubrication will be performed according to the following structural and dynamic scheme, which is shown in  

fig. 1.  

 
Fig. 1. Structural and dynamic scheme of simulation of tribosystems running-in processes 

The structural dynamic scheme is built on the principle of two blocks connected in series.  

The first block simulates the change of the following values:  

- input impact on the tribosystem Wi, (the power supplied to the tribosystem) is determined by the 

formula given in the work [15];  

-  the maximum value of the input impact, when there is accelerated wear of tribosystem materials, or 

burr of friction surfaces, Wb, is determined by the formula given in the work [14]; 

- speed of dissipation in the tribosystem WТR, is determined by the formula given in the work [15];  

- the maximum value of the quality factor (Q-factor) of the tribosystem Qmax during the running-in time, 

is determined by the formula given in the work [16]; 

-  the design parameters of the tribosystem are taken into account by the form factor Кf, is determined 

by the formula given in the work [16];  

- given value of the coefficient of thermal conductivity of triboelement materials аred, is determined by 

the formula given in the work [16];  

- rheological properties of the structure of composite materials in the tribosystem RSТS, is determined by 

the formula given in the work [16]. 

The second block of the structural-dynamic scheme, fig. 1, simulates the reaction of the tribosystem to a 

change in the input external influence, with a subsequent change and stabilization of the volumetric wear rate I(t) 

and coefficient of friction f(t) after completion of the running-in. Such processes are accompanied by a change in 

the roughness and structure of the surface layers of triboelement materials.  

The transfer functions of the second modeling block, fig. 1, are similar to the transfer functions of the 

second block of the structural-dynamic scheme, which is presented in the work [15]. Transfer functions are inertial 

links and characterize the sensitivity of the tribosystem to input external influences and the ability of the 

tribosystem to rearrange the surface layers of the materials from which the triboelements are made during running-

in. Such a reconstruction is associated with a change in the load, sliding speed, and Q-factor of the tribosystem 

[16]. Such processes are a function of time.  

Applying the methods of the theory of identification of dynamic objects, it is possible, for the structural-

dynamic scheme in fig. 1, to obtain an equivalent transfer function for simulating the running-in of the tribosystem: 
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We will write the corresponding equation of the tribosystem running-in dynamics in the following form: 
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The differential equation of the second order is written in operator form, where the symbol р, is the 

differentiation operator, d/dt.  

The right-hand side of the differential equation (2), which characterizes the input effect on the tribosystem, 

contains the first and second derivatives. The input influence is represented as a product of coefficients and a time 

constant К0·К2·Т3. This allows us to state that the running-in processes of the tribosystem will effectively take 

place when the input action (load and sliding speed) will change in time and have fluctuations with positive and 

negative acceleration of these values from the set (program) value. This requirement corresponds to the running-

in program "at the border of seizing". 

The left part of the equation is the response of the tribosystem to the input signal. Tribosystem time 

constants Т2 and Т3  have the dimension of time and characterize the inertia of the processes occurring in the 

tribosystem during running-in.  

Increasing time constants Т2, and Т3, makes the process less susceptible to changes in the input influence, 

the running-in process increases in time, and the tribosystem becomes insensitive to minor changes in load and 

sliding speed. Conversely, the reduction of time constants makes the tribosystem sensitive to any external changes. 

The procedure of parametric identification or finding expressions for calculating gain coefficients and time 

constants that characterize the dynamics of the tribosystem run-in process is an experimental material that allows 

you to select the most significant factors that affect the running-in process. 

Gain factor К0, which is included in the first block of the structural-dynamic diagram, fig. 1 and in the 

differential equation, formula (2) takes into account the degree of influence of the input signal (load, sliding speed, 

tribological characteristics of the lubricating medium) on the value of the output signal (Q-factor of the 

tribosystem). Based on this physical concept and using the dimensional methods of similarity theory and modeling, 

we will get an expression: 
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where Wi  - the input effect, or the power supplied to the tribosystem, is calculated as the product of the load 

and the sliding speed, the formula for the calculation is given in works [14, 15]; 

Wb  - input impact, or power, when loss of stability, burr or accelerated wear occurs, the formula for 

calculation is given in the work [14]. 

As follows from the expression (3) of the ratio of the active input influence Wi, selected for the tribosystem 

running-in mode, to the maximum value Wb, when there is a loss of stability, burr or accelerated wear, characterizes 

the maximum value Wi, which can be used when running in tribosystems. Relation Wi/Wb should not exceed units. 

Size Wb is determined by modeling according to the method given in the work [14]. 

The physical meaning of the coefficient К2 – it is the sensitivity of the tribosystem to changes in external 

influences (load, sliding speed, Q-factor of the tribosystem). The value of the coefficient К2 is calculated according 

to the formula given in the work [14] and has a similar physical meaning. 

Coefficient К3 – characterizes the ability of the tribosystem to self-organize when the values of the input 

parameters (load, sliding speed, Q-factor of the tribosystem) change. The value of the coefficient К3 is calculated 

according to the formula given in the work [14] and has a similar physical meaning. 

Time constant Т2, which is included in the left part of the differential equation (2), characterizes the time 

during which the temperature gradient stabilizes by the volumes of the triboelements, taking into account the 

thermal conductivity of materials when the external conditions change, the dimension is a second. Value Т2 is 

calculated according to the formula given in the work [14] and has a similar physical meaning. 

Time constant Т3, which is included in both the right and left parts of the differential equation (2), 

characterizes the time during which the tribosystem returns to a stable mode of operation after the cessation of the 

action of the disturbing force, or the time until the parameters stabilize in the new mode of operation. Value Т3 is 

calculated according to the formulas given in the work [14] and have a similar physical meaning. 

 

Results 

 

The solution to the above differential equation (2) when simulating the volume rate of wear is the following 

expression: 
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where Ist – the value of the wear rate of the tribosystem after running-in (stationary mode) is determined by 

the expression given in the work [18]; 

λ – exponent, which takes into account the change in the constant Т3, as a function of running-in time, a 

dimensionless quantity; 
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t – running-in time, which varies from zero to completion of the running-in process, dimension second. 

The decrement of damping of oscillations during running-in is represented by the following formula: 
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The time constant of the tribosystem for simulating the volumetric rate of wear during running-in is 

represented by the following formula: 
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The frequency of wear rate fluctuations υI  during running-in: 
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The amount of deviation of the volume rate of wear from the current value during the oscillating process: 
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The solution to the above differential equation (2) when modeling the friction coefficient is the following 

expression: 

 


































)sin(cos)()(1)(
3,0

20 tAtеtККftf ff

t
T

d

st f

f

f

 ,                          (9) 

 

where fst – the value of the friction coefficient of the tribosystem after running-in (stationary mode) is 

determined by the expression given in the work [18]. 

The decrement of damping of oscillations during running-in is represented by the following formula: 
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The time constant of the tribosystem for simulating the friction coefficient during running-in is represented 

by the following formula: 
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Frequency of friction coefficient fluctuations υf  during running-in: 
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The amount of deviation of the friction coefficient from the current value during the oscillating process: 

 

.
1 2

f

f

f

d

d
A


                                                                        (13) 

 

When modeling the running-in processes of tribosystems, especially according to the program "at the 

boundary of seizing", it is necessary to take into account the limiting values of the load and sliding speed when 

accelerated wear or scuffing occurs. Such parameters are not constant for tribosystems, but depend on the design 

(shape factor), rheological properties of triboelement materials and their thermal diffusivity, roughness of friction 

surfaces and sliding speed. A change in the sliding speed leads to a change in the strain rate on the actual contact 
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patches, which affects the quality factor of the tribosystem and its change during running-in, which is presented in 

the work [16]. 

On fig. 2 shows the dependences of the change in the magnitude of the input impact on the tribosystem 

when scoring or accelerated wear occurs – Wb, when changing the sliding speed and tribological properties of the 

lubricating medium. The dependencies are built according to the method for assessing the robustness of 

tribosystems, presented in the works [14, 19] and verified experimentally with an assessment of the reproducibility 

of the results and the adequacy of the simulation results to the experimental data. 

The dependencies are built for the tribosystem «steel 40H + Br.AZh.9-4», Кf = 12,5 m-1, Ra = 0,2 micron, 

Sm = 0,4 mm. 

 

 
 

Fig. 2. Dependencies of the value of the input impact, when the loss of stability occurs (accelerated wear or burr), for 

different values of the sliding speed and tribological properties of the lubricating medium: 1 - MG-15B hydraulic oil; 2 - engine oil 

M-10G2K; 3 - transmission oil TSP-15K; 4 – the resulting curve for points that have the same loss of stability value 

 

Analysis of the presented dependencies allows us to draw the following conclusions. The figure field can 

be divided by curve 4 into two parts. To the left of curve 4 - the loss of stability of tribosystems occurs due to the 

occurrence of accelerated wear. To the right of curve 4 - due to tearing of friction surfaces. Points on curves 1, 2, 

3, marked with "stars" have the physical meaning of the points of transition of buckling from accelerated wear of 

friction surfaces to scuffing of surfaces. 

As follows from the dependencies, curves 1, 2, 3 have a minimum, where the occurrence of accelerated 

wear occurs at the minimum values of the input action, which is supplied to the tribosystem. This minimum can 

be explained by the absence of protective structures on the friction surfaces, since activation energy is not enough 

for their formation. There is an adsorbed viscous lubricating film on the friction surface. With an increase in the 

power supplied to the tribosystem, the activation energy becomes sufficient to form, first, viscoelastic structures, 

and then, solid elastic structures (right side of line 4). 

These dependencies formed the basis for obtaining the exponent λ, which is presented in formulas (4) and 

(9) and which can be expressed by the following relationship: 
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where Т3(v=vred) – the value of the time constant at the sliding speed, which corresponds to the tribosystem 

running-in mode, dimension s; 

Т3(Wb=min) – the value of the time constant at the sliding speed, which corresponds to the minimum 

value of the input influence, when the tribosystem loses stability, dimensionality s. This is the minimum on the 

curves, fig. 2. 

When modeling the change in the volumetric wear rate during running-in, it is necessary to substitute the 

value in formula (14) Т3(I), the formula for calculation is presented in the work [14]. When modeling the friction 

coefficient, in formula (14) it is necessary to substitute the value Т3(f), the formula for calculation is presented in 

the work [14]. 

Exponent λ with the coefficients К0·К2 in the solutions of differential equations (4) and (9), takes into 

account the margin for stable operation of the tribosystem during running-in. Or, according to work [14] – 

tribosystem robustness margin. The method for determining the robustness of a tribosystem is described in the 

work [14]. 

Applying formulas (4) – (14), it is possible to simulate the processes of running-in of tribosystems over 

time when the following input factors are changed: 

- load, N; 
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- sliding speed, m/s; 

- geometric dimensions of the tribosystem, which are taken into account by the form factor Ка, 1/m; 

- coefficients of thermal conductivity of materials of moving and fixed triboelements аred, m2/s; 

- rheological properties of the structure of combined materials in the tribosystem RSТS, 1/m; 

- tribological properties of the lubricating medium Еu, J/m3; 

- roughness of friction surfaces Ra and Sm, m. 

 

Conclusions 

 

The structural and parametric identification of the tribosystem as an object of simulation of running-in 

under conditions of extreme lubrication was carried out. It has been established that the processes of running-in of 

tribosystems are described by a second-order differential equation and, unlike the known ones, take into account 

the limit of loss of stability (robustness reserve) of tribosystems. It is shown that the nature of tribosystems running-

in conditions of extreme lubrication depends on the gain coefficients and time constants, which are included in the 

right-hand side of the differential equation.  

It is shown that the processes of running-in of tribosystems depend on the type of the magnitude of the 

input influence on the tribosystem, the first and second derivatives. The input influence is represented as a product 

of coefficients and a time constant К0·К2·Т3. This allows us to state that the running-in processes of the tribosystem 

will effectively take place when the input action (load and sliding speed) will change in time and have fluctuations 

with positive and negative acceleration of these values from the set (program) value. This requirement corresponds 

to the running-in program "at the border of seizing". 

The left part of the equation is the response of the tribosystem to the input signal. Tribosystem time 

constants Т2 and Т3  have the dimension of time and characterize the inertia of the processes occurring in the 

tribosystem during running-in. Increasing the time constants makes the process less sensitive to changes in the 

input signal, the warm-up process increases in time, and the tribosystem becomes insensitive to small changes in 

load and sliding speed. Conversely, the reduction of time constants makes the tribosystem sensitive to any external 

changes. 
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Войтов А.В. Математична модель припрацювання трибосистем в умовах граничного мащення. 

Частина 1. Розробка математичної моделі 

 

У роботі отримав розвиток методичний підхід в отриманні математичних моделей, які описують 

припрацювання трибосистем в умовах граничного мащення. 

Виконано структурну та параметричну ідентифікацію трибосистеми, як об'єкта моделювання 

припрацювання в умовах граничного мащення. Встановлено, що процеси припрацювання трибосистем 

описується диференційним рівнянням другого порядку та на відміну від відомих враховує межу втрати 

стійкості (запас робастності) трибосистем. Показано, що характер припрацювання трибосистем в умовах 

граничного мащення залежить від коефіцієнтів підсилення і постійних часу, які входять в праву частину 

диференційного рівняння.  

Показано, що процеси припрацювання трибосистем залежать вид величини вхідного впливу на 

трибосистему, перша та друга похідні. Вхідний вплив представлено у вигляді добутку коефіцієнтів та 

постійної часу К0·К2·Т3. Це дозволяє стверджувати, що процеси припрацювання трибосистеми ефективно 

проходитимуть, коли вхідний вплив (навантаження і швидкість ковзання), змінюватимуться в часі і мати 

коливання з позитивним і негативним прискоренням цих величин від встановленого (програмного) 

значення. Такій вимогі відповідає програма припрацювання «на межі заїдання». 

Ліва частина рівняння - це реакція трибосистеми на вхідний сигнал. Постійні часу трибосистеми Т2 

та Т3  мають розмірність часу і характеризують інерційність процесів, що протікають в трибосистемі, під 

час припрацювання. Збільшення постійних часу робить процес менш сприйнятливим до зміни вхідного 

сигналу, процес припрацювання збільшується в часі, а трибосистема стає нечутливою до незначних змін 

навантаження та швидкості ковзання. І навпаки, зменшення постійних часу, робить трибосистему 

чутливою до будь яких зовнішніх змін. 

Ключові слова: трибосистема; припрацювання; математична модель припрацювання; 

диференційне рівняння; коефіціент підсилення; постійна часу; граничне мащення; добротність 

трибосистеми; робастність трибосистеми; швидкість об'ємного зношування; коефіцієнт тертя 
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Abstract 

 

The study proposes a diagnostic control method for assessing the quality of commercial batches of 

hydraulic oils based on the kinetics of changes in the thickness of lubricating layers, shear stresses of the lubricating 

material, and effective viscosity in tribotechnical contact. Timely and high-quality tribomonitoring of lubricants 

provides a perspective on their rational use and reduced wear of equipment parts. The developed methodology 

simulates the operation of gears in rolling conditions with a slip of 30% using a roller analogy. Samples of AMG-

10 oil from two manufacturers were analyzed. For "Bora B" AMG-10 oil (sample 1) with gradients of the sliding 

speed of the lubricating layer in contact from 5.63·103 to 5.73·105 с-1, the effective viscosity is set at the level of 

4249 and 5039 Pa·s at a bulk oil temperature of 20 and 100 oС, respectively, which indicates the resistance of oil 

components to destruction under conditions of increasing shear rate gradient. For AMG-10 oil (sample 2), the 

effective contact viscosity decreases by 1.53 times both at an oil temperature of 20 oС and at 100 oС and is 2764 

Pa·s (at 20 oС) and 3309 Pa·s (at 100 oС), which indicates the destruction of the components of the lubricant. For 

"Bora B" AMG-10 oil, effective lubricating properties have been established both during the start-up period and 

at maximum revolutions in conditions of rolling with slipping. It was shown that at start-up, regardless of the 

temperature of the lubricant, the mixed lubrication mode dominates. At the maximum revolutions of the tested 

samples, the hydrodynamic lubrication mode dominates, which indicates the effective lubricating properties of the 

Bora B AMG-10 oil. According to the kinetics of changes in the rheological parameters of oils, it was established 

that the resistance of the lubricant's components to mechano-thermal destruction under non-stationary lubrication 

conditions contributes to the effective formation of a lubricating layer in contact with a high bearing capacity.  

 

Key words: aviation oils, rheological properties, lubrication mode, effective viscosity, shear rate gradient. 

 

Introduction 

 

The reliability of tribotechnical systems is established at the design stage, ensured during production, and 

confirmed during the operation of machines and mechanisms. Lubricating material significantly affects reliability 

indicators. Modern requirements for the reliability of tribomechanical systems are related to the qualitative 

improvement of lubricating materials and their components. In general, they are due to an in-depth analysis of the 

lubricating medium's state and the metal's contact surface in the friction process. The production technology of 

lubricating materials and their components is intensively developing and improving. New lubricating materials on 

mineral and synthetic bases are being created. Serious developments are underway to optimize the component 

composition of oils and lubricants, improving their physical, chemical, and operational properties. 

The correct selection of lubricants and triboelement materials often determines the reliability of machines 

and mechanisms with highly loaded friction units. Therefore, studying patterns that determine the interaction of 

friction surfaces and lubricants requires comprehensive laboratory research. The analysis of expert practice allows 

for revealing the connection between the properties (physical, chemical, consumer) and the intended purpose of 

specific categories of lubricants. Currently, there are two approaches to the analysis of lubricants: the analysis of 

lubricants during production (incoming control of basic components, additives, and commercial batches of finished 

products) and the analysis of operational oil (diagnostic control). 

http://creativecommons.org/licenses/by/3.0/
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These two directions are different from each other. Thus, during production and incoming control, the 

quality indicators must fall within the specified, previously known limits determined by standards and technical 

conditions. During diagnostic control, monitoring not so much the absolute values of specific quality indicators as 

the change of these values over time is necessary. For each indicated area of quality control of commercial or 

operational lubricants, it is essential to correctly choose the most convenient methods of analyzing the indicators 

of interest. These indicators include viscosity, flash point, additive content, total acid/alkaline number, water 

content, soot, total content of ferromagnetic and other wear particles, nitration, sulfonation, and many other 

indicators. The correct choice of lubricants and their timely and high-quality diagnostics are among the main 

conditions that increase durability and efficiency and preserve the technical accuracy of machines and mechanisms 

for an extended period. In addition, timely and high-quality tribomonitoring of lubricants provides a perspective 

on their rational use, reducing the wear of equipment parts. These measures aim to reduce the cost of repairing 

machines and mechanisms, reduce their downtime, and reduce the cost of manufactured products. 

 

Literature review 

 

Due to the complexity of physicochemical processes in the zone of frictional contact, the properties of 

contact surfaces and lubricating material during friction are challenging to describe from the point of view of 

classical mechanics. Therefore, to establish regularities of tribological and rheological indicators of friction 

systems in the limit mode of lubrication: studies of the mechano-thermal stability of the limit film [1], the influence 

of the shear rate gradient on the change in the effective viscosity and shear stresses in the lubricant [2] are actively 

being conducted to predict the effectiveness of the formation of the thickness of the lubricating film in contact. 

The resistance of the lubricating film to mechanical destruction due to an increase in the shear rate gradient 

is a determining factor that ensures the normal performance of friction pairs in critical conditions. The destruction 

of the lubricating film during friction is one of the leading factors determining the intensification of energy 

processes occurring in the contact zone. It manifests in violating the structural suitability of the contact surfaces 

and lubricant under critical friction conditions, destroying previously formed metastable structures. [3]. 

In structural adaptation, lubricating boundary layers of varied nature are formed on activated metal surfaces 

during friction. The initially created lubricating layer has a solid structure, is characterized by non-Newtonian 

properties, and binds to both surfaces. When stress is applied, the layer will deform in shear until the applied shear 

stress is large enough to overcome adhesion to the surface. According to [4], outside of this condition, the sliding 

lubricant layer can behave according to two schemes. According to the first scheme, the lubricant in contact 

behaves as a liquid or remains attached to both surfaces but "melts" in the center. According to the second scheme, 

the lubricating layer retains its solid structure, and interlayer sliding occurs between areas of the lubricating 

material. When the action of the external shear force stops, the lubricant reorganizes its structure to its original 

state but with a constant shift between its two surfaces (Fig. 1). 

 

 
 

Fig. 1. The influence of shear stress on the lubricating film's deformation and its structure's reorganization [4]. 
 

According to [5], the lubricant is characterized by heterogeneity of rheological properties along the 

thickness of the film in frictional contact: a surface boundary layer with rheological properties different from the 

properties of the main part of the material in the center is formed near the wall. The lubricant flows right next to 

the wall as pressure is created during the system's operation. At the same time, the flow rate is zero, and the 

lubricant's viscosity is maximum [6]. Therefore, the material of the contact surfaces can significantly influence the 

rheological properties of the lubricant. The research paper [7] presents the results of studies on the formation of 

boundary layers in industrial lithium (LT4-C3) and calcium (STP) lubricants near the walls of six different 

materials: two elastomeric materials (nitrile-butadiene rubber (NBR), silicone rubber (MVQ/ VMQ)), two 

thermoplastic materials (polyoxymethylene (POM), polyethylene (PE)) and two metal alloys (copper C11000 and 

steel 304). Tests have shown that metal alloys have the most significant ability to adsorb lubricant particles on 

their surface. Elastomeric materials have a minor influence on the change in structural viscosity near the wall, 

which indicates their low capacity to form a surface layer in the tested commercial lubricants. 



36 Problems of Tribology 

 

An experimental method for determining the interfacial shear strength based on the measured friction force 

and contact area during linear contact loading on coated metals has been developed [8]. It was found that the shear 

strength at the interface affects the overall sliding friction force under the test conditions. 

In [9], the mechanism of adhesion of the boundary layer of lubricant to the surfaces forming a 

hydrodynamic wedge is considered. If molecules of the lubricant are in close proximity to a solid body, then their 

behavior is primarily determined by the influence of forces from this body. A particular rheology intermediate 

between the rheology of solids and liquids is characteristic of an oil film in such "boundary" conditions. With 

distance from the surface of the solid body, the influence of the force field created by it weakens, and its volumetric 

properties return to the lubricant. At the same time, boundary films have a thickness of 0.010.05 μm and less. 

In the mathematical modeling of the behavior of Newtonian/non-Newtonian fluids, rheological models of 

pseudoplastic and viscoplastic fluids and their parameters are used. For example, when building models of non-

Newtonian fluids, the principle of mechanical modeling proposed by Rayner [10] is used. According to this 

principle, the behavior of various substances is defined as a parallel or sequential combination of elements with 

viscous, elastic, or plastic deformation. In [11], a general thermodynamic model of the melting of an ultrathin film 

of lubricant was proposed, and the value of the critical shear rate at which the lubricant melts by the shear melting 

mechanism was determined. It was established that the action of shear stresses leads to an increase in the volume 

of the lubricant, and, as a result, to an increase in the thickness of the lubricating layer in contact. The mathematical 

relationship between the volume and the thickness of the lubricating layer can be represented as: 
𝛿𝑉

𝑉0
=

𝐴𝛿ℎ

𝐴ℎ
=

𝛿ℎ

ℎ
,                                                                     (1) 

where 𝛿𝑉 – volume change, 𝑉0 – initial volume, ℎ - oil layer volume, 𝐴 – contact area. 

In this way, the importance of the established patterns of change of rheological indications in oily material 

in tribotechnical contact gives feasibility to predict the effectiveness of the formation of a boundary layer on active 

contact surfaces. It is especially essential in the case of boundary conditions, as the resistance of boundary melting 

to mechanical destruction ensures the movement of antifriction and anti-wear indicators in contact. Therefore, the 

actual direct assessment of the viscosity of the oily material is the analysis of its rheological characteristics under 

the dominance of different operating modes. 

 

Purpose  
 

To analyze the influence of the gradient of the shear rate, the shear stresses of the lubricating layer, and the 

effective viscosity in contact on the lubrication mode of commercial batches of aviation hydraulic oils. 

 

Objects of research and experimental conditions 
 

Oils to be studied: 

- Sample 1 is oil "Bora B" AMG-10 according to TU U 19.2-38474081-010: 2016 with change 1 (produced 

by the LLC “Bora B”, Ukraine); 

- Sample 2 is oil AMG-10 according to GOST 6794-75 with changes 1 - 5 (produced by the LLC “NPP 

Kvalitet”). 

Sample 1 was developed to organize work on avoiding oil import and overcome the critical dependence of 

the defense industry of Ukraine on import supplies of AMG-10 oil. 

The study of the samples was carried out on a software-hardware complex to evaluate the tribological 

characteristics of triboelements, for which a special software had been  developed for stepper motor control and 

online visual evaluation of the kinetics of changes in the main tribological parameters of tribocontact [12]. Work 

of gears in the conditions of rolling with sliding was modeled using the software-hardware complex by means of 

a roller analogy (fig. 1). 

   
 

Fig. 2. The diagram of the loading node of the test samples with rotation at speeds V1 and V2 and the appearance 

of the friction tracks of the 30ChGSA steel sample; 1 – section of the contact surface of the sample. 
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Lubrication properties (hydrodynamic and non-hydrodynamic components of the lubricating film 

thickness) were determined by the method of voltage drop in the mode of normal glow discharge. Rheological 

characteristics of the lubricant (shear rate gradient, shear stress of lubricating layers, effective viscosity in contact) 

were evaluated by the kinetics of changes in the lubricating layer thickness, rotation speed of the leading and 

lagging surfaces and temperature of the lubricating layer. 

Rollers (steel 30ChGSA, HRC 48…52, Ra 0.34 μm) were used as the material of contact surfaces. 

Lubrication of the contact surfaces was performed through immersing the lower roller in a bath of oil. 

Testing was conducted in nonstationary conditions, which provide for the cyclicity of repetition in the start-

up – stationary operation – braking – stop mode. The total duration of the cycle was 80 s. 

Maximum rotation speed: 700 rpm for the leading surface and  500 rpm for the lagging surface. Sliding: 

30%. Maximum contact load by Hertz: 200 MPa.  Total number of cycles: 100. Temperature of oil: 20 0C (cycles 

1-45), rise to 100 0C (cycles 46-50), 100 0C (cycles 51-100).  

 

Analysis of the main results 

 

Table 1 presents the averaged results of experimental studies of the rheological and lubricating properties 

of the investigated aviation hydraulic oils. 

Table 1 

Rheological and lubricating characteristics of aviation hydraulic oils 

 

Parameter Lubricant 

Sample 1 Sample 2 

Temperature of lubricant, oС 

20 100 20 100 

Oil layer shear stress,МПа 7,68 – 16,53 5,585 – 14,7 7,913 – 15,36 7,145 – 14,98 

Effective contact viscosity, Pа·с 1836 – 8065 104,9 – 9182 1130 - 6789 78,67 - 7544 

Thickness of boundary adsorption 

layers, μm 
0,34 – 1,985 0,118– 1,992 0,118 – 1,38 0,104 – 1,57 

Lubrication mode at startup 0,71  - 4,13 0,25 – 4,14  0,25 – 2,87 0,22 – 3,27  

Thickness of the lubricating layer in 

contact, μm 
3,95 – 8,768 4,65 – 9,698 3,055 – 7,8 3,454 – 7,93 

Lubrication mode at maximum 

revolutions 
8,22 – 18,24  9,67 – 20,1 6,35 – 16,22  7,18 – 16,49 

 

Characteristics of sample 1. "Bora B" AMG-10 oil is characterized by effective rheological properties. 

Ensuring the hydrodynamic lubrication regime at the maximum revolutions of the cycle duration, in rolling 

conditions with 30% slip occurs due to the high bearing capacity of the lubricant, the formation in contact of hydro- 

and non-hydrodynamic components of the thickness of the lubricating layer, which are characterized by low shear 

stresses, on average, 9.4 MPa regardless of oil temperature (Fig. 3). 

 

 
Fig. 3. Kinetics of changes in shear stress of the lubricating layer in contact (τ). 
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Despite the high gradients of the sliding speed of the lubricating layer in contact, from 5.63·103 to 5.73·105 

с-1, which occur at the maximum sliding speed of 0.71 m/s in conditions of rolling from sliding, the lubricant is 

characterized by effective with a viscosity at the level, on average, of 4249 and 5039 Pa·s at the volume 

temperature of the oil of 20 and 100 oС, respectively (Fig. 4). This testifies to the resistance of oil components to 

destruction under conditions of increasing shear rate gradient. The most significant decrease in the effective 

viscosity in contact with 105 - 250 Pa·s occurs in the conditions of the initial increase in oil temperature (45 - 49 

test cycles). This is due to a change in the nature of the boundary adsorption layers, which are characterized by 

effective adaptation in a wide range of temperatures. 

Characteristics of sample 2 AMG-10 oil, similar to sample 1, are characterized by effective rheological 

properties. The shear stress of the lubricating layers is set at the level, on average, of 9.4 MPa at an oil temperature 

of 20 oС, which is similar to the indicator for sample No. 1. When the oil temperature rises to 100 0C, this parameter 

increases to 10.82 MPa, which is slight, 1.15 times more, compared to sample 1 (Fig. 3). 

Compared to sample 1, the effective contact viscosity decreases, on average, by 1.53 times at an oil 

temperature of 20 oС and 100 oС and is 2764 Pa·s (at 20 oС) and 3309 Pa·s (at 100 oC). However, with an increase 

in temperature during 45-50 cycles, a sharp decrease of this parameter was established to 78-240 Pa·s, which is 

due to the adaptation of the boundary layers of the lubricant to the change in the temperature regime in the frictional 

contact. The range of change in the gradient of the sliding speed of the lubricating layer (γ) in contact at the 

maximum sliding speed of 0.71 m/s in the conditions of rolling from sliding for samples 1 and 2 is from 4.51·103 

to 5.73·105 с-1. 

 
Fig. 4. Kinetics of changes in the effective oil viscosity (η) in contact. 

 

Depending on the thickness of the lubricating layer, the lubrication mode in the frictional contact is 

determined according to the λ criterion: 

𝜆 = √
ℎ

𝑅𝑎1
2 +𝑅𝑎2

2 ,                                                                    (2) 

where h is the thickness of the lubricating layer; Ra is the average arithmetic deviation of the profile of the 

contacting surfaces. 

An informative indicator of the transition conditions from dry to hydrodynamic lubrication is the Hertz-

Striebeck diagram. Fig.5 and Table 1 present the calculated values of the lubrication mode for the studied 

lubricants. 

 
Fig. 5. Friction coefficient (f) and lubrication mode (λ) according to the Hersey-Striebeck diagram:  

1 - dry, 2 - marginal, 3 - mixed; 4 – elastohydrodynamic; 5 - hydrodynamic lubrication modes. 
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The studied oil "Bora B" AMG-10 is characterized by effective lubricating properties during the start-up 

period and at the maximum studied revolutions. Breakdown of the lubricating layer at start-up and direct metal 

contact of the friction surfaces was not established. A semi-dry lubrication mode was set only for a short time 

during running-in and initial temperature rise. At start-up, regardless of the temperature of the lubricant, the mixed 

mode of lubrication dominates. At the maximum revolutions of the tested samples, the lubrication hydrodynamic 

mode dominates, indicating the effective lubricating properties of the oil "Bora B" AMG-10. For the tested AMG-

10 oil at a bulk oil temperature of 20 and 100 oС, the thickness of the marginal adsorption layers is 1.44 times 

smaller, which leads to a deterioration of the lubrication regime in contact at start-up and the dominance of the 

marginal lubrication regime in 25% of the working cycles. As the temperature of the lubricant increases, long-

term restoration of the protective boundary films of the oil takes place, and the period of their formation increases 

by 2.5 times, causing the implementation of a semi-dry lubrication mode at start-up. The total thickness of the 

lubricating layer is 1.27 times smaller compared to "Bora B" AMG-10 oil, regardless of the temperature of the 

lubricant. Thus, the resistance of the components of the studied sample 1 to mechano-thermal destruction under 

non-stationary lubrication conditions contributes to the effective formation of a lubricating layer in contact with a 

high bearing capacity, which ensures the dominance of the mixed or hydrodynamic mode of lubrication. 

Consequently, during the operation of the tribosystem in such conditions, optimal antifriction and antiwear 

characteristics of lubricants will be manifested, which is the basis for developing recommendations for the 

selection of commercial batches of oils for operation in conditions of rolling with slipping based on the proposed 

methodology for evaluating the rheological and lubricating properties of lubricants. 

 

Conclusions  
 

1. The conducted research on the software-hardware complex simulated gears' operation in rolling 

conditions with sliding using a roller analogy. Commercial AMG-10 oils from different manufacturers were 

studied. The errors of the obtained experimental values of the studied parameters are within 7-10%. 

2. "Bora B" AMG-10 oil (sample 1) is characterized by low shear stresses, on average, 9.4 MPa, regardless 

of the oil temperature. For AMG-10 oil (sample 2), the shear stress of the lubricating layers is set at 9.4 MPa at an 

oil temperature of 20 oС, similar to the indicator for "Bora B" AMG-10 oil. When the oil temperature rises to      

100 oС, this parameter increases by 1.15 times. 

3. For "Bora B" AMG-10 oil (sample 1), the effective formation of the thickness of the lubricating layer in 

contact, resistance to the gradient of the shear rate, and effective viscosity is 4249 and 5039 Pa·s at the bulk oil 

temperature of 20 and 100 oС respectively. For AMG-10 oil (sample 2), the effective contact viscosity decreases 

by 1.53 times both at an oil temperature of 20 0С and at 100 oС and is 2764 Pa·s (at 20 oС) and 3309 Pa·s ( at 100 
oС), which indicates the destruction of the components of the lubricant. 
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Ільїна О. А., Мікосянчик О. О., Ящук О. П., Мнацаканов Р.Г., Березівський Н.М. Трибомоніторинг 

якості авіаційних гідравлічних олив за змащувальними та реологічними показниками  

 

Запропонована методика діагностичного контролю оцінки якості товарних партій гідравлічних олив 

за кінетикою зміни товщини мастильних шарів, напружень зсуву мастильного матеріалу та ефективною 

в’язкістю в триботехнічному контакті. Своєчасний та якісний трибомоніторинг мастильних матеріалів 

надає перспективу щодо їх раціонального використання та зменшення зносу деталей обладнання. В 

розробленій методиці за допомогою роликової аналогії моделюється робота зубчастих передач в умовах 

кочення з проковзуванням 30%. Проаналізовано зразки оливи АМГ-10 двох виробників. Для оливи «Бора 

Б» АМГ-10 (зразок №1) при градієнтах швидкості зсуву мастильного шару в контакті від 5,63·103 до 

5,73·105 с-1 встановлена ефективна в'язкість на рівні 4249 та 5039 Па·с при об'ємній температурі оливи 20 

та 100 оС відповідно, що свідчить про стійкість компонентів оливи до деструкції в умовах зростання 

градієнту швидкості зсуву. Для оливи АМГ-10 (зразок 2) ефективна в'язкість в контакті знижується в 1,53 

раз як при температурі оливи 20 оС, так і при 100 оС та становить 2764 Па·с (при 20 оС) та 3309 Па·с (при 

100 0С), що свідчить про деструкцію компонентів мастильного матеріалу. Для оливи «Бора Б» АМГ-10 

встановлені ефективні змащувальні властивості як в період пуску, так і при максимальних обертах в 

умовах кочення з проковзуванням. Встановлено, що при пуску, незалежно від температури мастильного 

матеріалу, домінує змішаний режим мащення, при максимальних обертах досліджуваних зразків домінує 

гідродинамічний режим мащення, що свідчить про ефективні змащувальні властивості оливи «Бора Б» 

АМГ-10. За кінетикою зміни реологічних показників олив встановлено, що стійкість компонентів 

мастильного матеріалу до механо-термічної деструкції при нестаціонарних умовах мащення сприяє 

ефективному формуванню мастильного шару в контакті з високою несучою здатністю. 

Ключові слова: авіаційні оливи, реологічні властивості, режим мащення, ефективна в'язкість, 

градієнт швидкості зсуву. 
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Abstract 

 

The work is dedicated to the thermal behavior and stress-strain state of ventilated disc brakes installed in 

the lightweight vehicles (scooters, electric bikes, ATVs, etc.) using ANSYS environment in various experiment 

modes. Modeling of the temperature distribution in the rotor (disc) and the corresponding brake pads is determined 

taking into account a number of factors and input parameters during the braking operation: the amount of rotation 

speed, the gap between the pads and the disc, the speed of load application, thermal expansion, etc. Numerical 

modeling of the transient thermal and the stress fields in the area of contact between the pads and the rotor is 

carried out by the method of sequential thermostructural connection of the intermediate calculation states of the 

brake model in the ANSYS Coupled Field Transient environment. For a comprehensive assessment of brake 

behavior, our research considers two load approaches: constant long-term (20 s) with an influence factor in the 

form of thermal expansion as a result of contact pair friction; linear load from the pads on the disс with a 

corresponding increase in pressure up to the moment when the rotation of the system is blocked. Our research 

presents an assessment of the rotor ventilation channels influence on the nature of the contact spot with the brake 

pads (open far-field contact, sliding contact, sticking contact, etc.). In addition, it is demonstrated that despite the 

linear increase in pads pressure on the rotor, the graphs of temperatures, volume (thermal expansion) and stresses 

are of parabolic character with a disproportionate increase in indicators. Such a result forces us to come to the 

conclusion that it is not possible to predict the behavior of the brakes based on the analysis during a short period 

of time of the experiment - conducting long-term analytical studies is extremely important in the case of brakes. 

 

Key words: friction, brake disc, brake pads, thermal load, stress-strain state, heat flow, von Mises stress, 

contact pressure, thermal expansion 

 

Introduction 

 

Scientific and technological progress has provided the industry with significant theoretical developments 

in the field of heat and mass transfer, for example, in spheres such as tribology or thermodynamics, which have 

developed over several decades with progress in many sectors: nuclear energy, aerospace and aviation, automotive, 

etc. Modeling of problems related to the phenomenon of heat or mechanical energy transfer in general and through 

friction pair contacts in particular, is of primary importance in the design of relevant units, for example, disc brakes 

of vehicles. Many authors raised such topics in their publications as: design and thermal analysis of disc brake for 

minimizing temperature [1]; effect of cross-drilled hole shape on crack of disc brake rotor [2]; thermal analysis of 

disc brakes using FEA [3-4]. In fact, it is not only about the development of new models of brakes, but also about 

the selection of optimal options for systems for existing vehicles, taking into account their class, type and operating 

conditions. As you know, brakes are a device that creates frictional resistance to move a system element (rotor) to 

stop further movement, so we can get acquainted with the modeling and analysis of FSAE car disc brake using 

FEM in [5] and discover the enhancement in design and thermal analysis of disc brake rotor in [6]. Brakes are a 

mechanism used to reduce the speed or stop the cycle of movement of a vehicle. Long-term use of the brake in a 

lightweight vehicle (bicycle and motorcycle) causes heating during the braking process [7-9], so that the rotor is 

deformed (jammed between the pads or breaks) due to high temperature and thermal expansion. Actually, the 
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thermal analysis of disc brake is the topic of publication [7], which could be effectively supplemented by the study 

on crack initiation at small holes of one-piece brake discs in [9]. In the research [10] authors present the velocity 

and relative contact size effect on the thermal constriction resistance in sliding solids. The influence of the braking 

time on the soundness of ventilated disc brake systems is reflected in [11-12]. Topic of investigation of temperature 

and thermal stress in ventilated disc brake based on 3D thermomechanical coupling model raised in [13] is similar 

to our work and makes sense to be researched. Our goal is to proceed the analysis of the behavior of the system 

under conditions of long-term friction at constant pressure with a corresponding increase in temperature and 

volume of the model, as well as with a variable load in the system (from the hydraulic cylinder), which leads to 

blocking of the brakes with plastic disc deformations (determination of stresses according to Mises). 

The purpose of the work 

 

Formation of a methodology for analytical studies of thermal modes of the lightweight vehicles disc brakes 

operation as a result of friction pairs contact with variable and constant pressure in the ANSYS Coupled Field 

Transient software environment. Analysis of the influence on heat dissipation and stress distribution of such factors 

as: duration of braking, convection in the environment, geometry of the brake disc and pads, system actuation 

time. 

Results of studies under constant load 

 

A disc brake is a system consisting of a brake disc (rotor), brake pads and calipers actuated by a hydraulic 

cylinder. The brake disc rotates with the wheel and the pads mounted on the brake calipers clamp it to stop or slow 

the wheel (Fig. 1). Brake pads generate heat through friction, converting kinetic energy into heat to reduce the 

total kinetic energy of the vehicle. Thus, due to the thermal energy generated during the braking process, the 

temperature of the disc on the contact part increases and generates fatigue stresses accumulation, causing cracks 

or plastic deformations that reduce the service life of the disc. Usually, ventilated discs are used to improve the 

efficiency of heat dissipation, because they have channels for air circulation: the higher the rotational speed of the 

disc, the higher the centrifugal force, which contributes to the dissipation of heat. 

 

 
(a) 

 
(b) 

 
(c) 

 

Fig. 1. Solid disc brakes model: a) isometry; b) the gap between the disc and the pads in the initial state (1.5 mm); 

c) FE grid of the model 

 

To select the optimal brake system according to the target vehicle, it is advisable to determine the required 

pressure [10-12] from the brake pads: 

 

 

𝑃 = 𝐹𝑑/𝑆𝜇,                                                                      (1) 

 

 

where: P - pressure between the disc and the pad; 𝐹𝑑 - force acting on the disc; 𝑆 - surface of the pad in contact 

with the disc; 𝜇 - coefficient of friction.  

The actual value of the pressing force 𝐹𝑑 can be found as follows: 

 

𝐹𝑑 =
𝑘 ∙ (𝑀

𝑣2

2
)

2
𝑟

𝑅
(𝑣𝑡 −

1

2
(
𝑣

𝑡
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⁄ ,                                              (2) 
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where: k – load factor – 0.3 (corresponding to 30%); M – mass of the vehicle; r – brake disc radius; R – wheel 

radius; v – vehicle speed. 

 

We apply the following values to the boundary conditions of the calculation: time of the experiment t = 

20 s; coefficient of friction 𝜇 = 0.2 с; angular velocity w = 3.5 rad/s, which corresponds to a wheel speed of 200°/s. 

Wheel is rotated due to the hub with the 4 holes for mounting bolts (Fig. 1a), where are observed the highest 

meanings of stress (Fig. 2b); the movement of pad ∆ is symmetrical and presented in steps (Table 1). The initial 

gap between pads and disc is 1.5 mm. Starting from 0.3 s and until the end of the experiment ∆=1.501 mm – thus, 

the full contact between friction pairs is simulated. 

 

 

Table 1 

Brake pads travel during the experiment (20 s) 

Time moment 0 s 0.1 s 0.2 s 0.3 s 20 s 

∆ 0 mm 0.75 mm 1.5 mm 1.501 mm 1.501 mm 

 

The FEM model consists of 101529 elements; applied material is Structural Steel (typical characteristics 

are embedded in Ansys); the number of time steps is 200 (duration of a step is 0.1 s); the total calculation time on 

the equipment (2 Intel Xeon processors 24 cores, RAM 48 Gb, NVIDIA GeForce 4Gb video) was 10 hours 42 

min. 

Let's analyze the stress maps of the brake pads and the ventilated disc (Fig. 2) - as we can see, there is a 

stress increase tendency while the experiment continues: 

- the pad is pressed to the disc in 0.2 s and its stress increases from 8.3 MPa (caused by reactions from the 

rotational movement in the holes for mounting bolts attaching the disc to the hub) to 223 MPa (when ∆ reaches 

1.501 mm). Further, as the experiment progresses, the stress increases to a maximum of 647 MPa at a time of 18.2 

s. The intermediate state of stress at the moment of time 17.4 s is presented in Fig. 2b (the curve is “max, MPa”). 

The curves "min, MPa" and "average, MPa" correspond to the minimally loaded locations of the body and the 

average value of loads for all its locations, respectively. 

- the pad stress increases to 22 MPa in the first 0.2 s (the period of pressing against the disc) and then 

reaches up to 138 MPa at the time of 19.5 s (Fig. 2a). 

 

 
 

 
(a) 

 
 

 
(b) 

Fig.2. Stress in the braking system at a constant load: a) brake pad and stress graph over time; b) ventilated disc 

and stress graph over time 

 

What should be paid attention to: despite the constant value of the displacement of the pads (it is stable 

and equal 1.501 mm during the entire experiment lasting 20 s), the stress values fluctuate and increase. Why do 

we observe such processes? Let's consider the answers to both questions sequentially. 
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1) Stress fluctuations are explained by the uneven structure of the disc itself (holes in the structure for 

ventilation): as it rotates, the area of contact with the pad is constantly changing, and thus the pressure and stress 

change as well. Let's visually check the nature of the pad contact with the disc at different moments of time (Fig. 

3) - the unevenness of the distribution is dictated by the channels in the disc that affect the contact spot: the position 

and movement of the contact element determines its condition relative to the target surface associated with it. 

 

 
1 s 

 
10 s 

 
20 s 

Fig.3. Analysis of brake pad contact area at different moments of time 

 

ANSYS monitors each contact element and assigns a status: 

- STAT = 0 Open far-field contact (open remote contact) – blue color; 

- STAT = 1 Open near-field contact (open near field contact) – yellow color; 

- STAT = 2 Sliding contact (sliding contact) – orange color; 

- STAT = 3 Sticking contact (sticking contact) – red color. 

An element is considered to be in close contact if its integration points (Gauss points or nodal points) are 

within the code-calculated (or user-defined) distance to the corresponding target surface. This distance is called 

the pinball area. A pinball domain is a circle (in 2-D) or a sphere (in 3-D) centered around a Gauss point. 

 The friction coefficient may depend on the relative speed of the contacting surfaces. As a rule, the static 

coefficient of friction is higher than the dynamic one. ANSYS provides the following exponential friction damping 

model: 

 

𝜇 = 𝑀𝑈 ∙ (1 + (𝐹𝐴𝐶𝑇 − 1) exp(−𝐷𝐶 ∙ 𝑣𝑟𝑒𝑙)),                                                 (3) 

 

where: 𝜇 – friction coefficient; 𝑀𝑈 - dynamic coefficient of friction (using the MP command in Ansys); 𝐹𝐴𝐶𝑇 - 

the ratio of static to dynamic friction coefficients (the minimum value is set by default 1.0); 𝐷𝐶 - damping 

coefficient (by default it is equal to 0 and has the unit of dimension time/length), so time has a certain value in 

static analysis); 𝑣𝑟𝑒𝑙  - slip velocity calculated by ANSYS. "Friction Decay" shows an exponential decay curve 

(Fig. 4a), where the static coefficient of friction is defined as: 

 

𝜇𝑠 = 𝑀𝑈 ∙ 𝐹𝐴𝐶𝑇                                                                            (4) 

 

 
(a) 

 
(b) 

Fig.4. Research of friction: a) exponential curve of friction damping; b) pressure map on the pad surface at the 

time of 20 s 

 

The damping coefficient can be determined if the static and dynamic coefficients of friction and at least 

one data point are known (𝜇1; 𝑣𝑟𝑒𝑙1). The equation to describe friction damping can be written as follows: 

 

𝐷𝐶 = −
1

𝑣𝑟𝑒𝑙1
∙ ln (

𝜇1−𝑀𝑈

𝑀𝑈(𝐹𝐴𝐶𝑇−1)
)                                                                (5) 

 

If no damping factor is specified in the simulation process, and FACT is greater than 1.0, then the friction 

coefficient will suddenly change from static to dynamic value as soon as the contact reaches the sliding state. It 

should be noted that such behavior is strongly not recommended, since the gap can lead to convergence difficulties 

when solving the problem [7-8]. 
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2) Why does the value of stresses in the disc and brake pads increase, if they remain stationary and do not 

increase the external load from the hydraulic cylinder? By the way, what is the maximum pressure value recorded 

during the experiment (Fig. 5)? 

 

 
(a) 

 
(b) 

Fig. 5. Determination of pressure in the disc brake system: a) FEM model with load vector; b) determination of the 

brake pad area (SolidWorks environment) 

 

We have measured the maximum value of the load (Fig. 5a) during the experiment in the Ansys 

environment: 7968.5 N at the time of 18.2 s. The pad area is 1030.78 mm2 (Fig. 5b), which corresponds to a 

pressure of 7.73 MPa. It’s possible to observe a similar value on the graph (Fig. 6d - orange color), which shows 

the average pressure value over the pad area. However, taking into account that the contact area varies, as shown 

in Fig. 3, and can occupy up to 35-40% of the pad area due to the ventilation holes at certain moments of time, the 

pressure value increases up to 20 MPa. This is a typical value for disc brakes in automotive and two-wheeled 

vehicles. Therefore, our experiments with the applied boundary conditions are approaching to the natural tests. 

The reason of the stress increase is the thermal expansion of the disc and pads (increase in volume) as a 

result of heating (Fig. 6a, b) and internal energy growth (Fig. 6c), which leads to a decrease in the gaps between 

disc and pads with the appropriate pressure rise (Fig. 6d). It should be noted that the increase in the volume of the 

pad is relatively linear over time, but the disc expands according to a geometric progression - in fact, this already 

prompts the idea of the feasibility of scientific research on ventilation holes in the structure of the disc, the selection 

of their optimal configuration, etc. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig.6. Thermal state analysis of disc brakes: a) volume of the disc; b) volume of pads; c) growth of 

energy over the friction; d) pressure on the pad surface (average in area and maximum in locations) 

 

Fig. 7 shows temperature maps of the disc at certain moments of time. Thus, the value of the disc 

temperature during the experiment lasting 20 seconds reached 34.87°C. It should be understood that the following 

boundary conditions were applied as a part of our research: temperature T(x,y,z) = 22°C at time t = 0 s and zero 

value of convection (please note that the simulation of moving air masses assumes 5 W⁄m2C in a static position 

and around 25 W⁄m2C - in dynamics) to obtain clean results of body heating and heat flux (fig. 8a,c). The value of 

the pad’s temperature reached - 35.04°C, which is shown on the graph of both elements heating (disc and pads) - 
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Fig. 8b. It’s quite exciting to observe how close are both graphs (Fig.8b) – heat transfer from pads to rotors could 

be visually observed by the temperature equalizing between both units at any time moment. 

 

 
0 s 

 

 
1 s 

 
10 s 

 

 
20 s 

Fig. 7. Temperature maps of the brake disc at different times of the experiment 

 

Let's turn to the theory of the thermal state description of the body - the first law of thermodynamics, 

which shows on the thermal energy saving [13]: 

 

𝐶𝑝 (
𝜕𝑇

𝜕𝑡
+ {𝑣}𝑇{𝐿}𝑇) + {𝐿}𝑇{𝑄} = 𝑝                                                             (6) 

 

In our calculated case, there is no internal pressure source (p = 0), and therefore equation (6) will be written as 

follows: 

 

𝜌𝐶𝑝 (
𝜕𝑇

𝜕𝑡
+ {𝑣}𝑇{𝐿}𝑇) + {𝐿}𝑇{𝑄} = 0,                                                          (7) 

where: 

 

{𝐿} =

{
 
 

 
 
𝜕

𝜕𝑥
𝜕

𝜕𝑦

𝜕

𝜕𝑧}
 
 

 
 

,    {𝑣} = {

𝑣𝑥
𝑣𝑦
𝑣𝑧
},                                                                    (8) 

 

where: {𝐿} – vector operator, {𝑣} – vector speed of the vehicle.  

Let's write Fourier's law (7) in matrix form: 

 



Problems of Tribology 47 

 
{𝑄} = −[𝐾]{𝐿}𝑇,                                                                        (9) 

 

where: [K] – matrix with the corresponding coefficients 𝐾𝑥𝑥 , 𝐾𝑦𝑦 , 𝐾𝑧𝑧 by axles X, Y, Z, which are equal in all 

directions for isotropic materials: 𝐾𝑥𝑥 = 𝐾𝑦𝑦 = 𝐾𝑧𝑧 [13]: 

 

[𝐾] = [

𝐾𝑥𝑥 0 0
0 𝐾𝑦𝑦 0

0 0 𝐾𝑧𝑧

]                                                                   (10) 

 

When combining equations (7) and (9), we get the following expression: 

 

𝜌𝐶𝑝 (
𝜕𝑇

𝜕𝑡
+ {𝑣}𝑇{𝐿}𝑇) + {𝐿}𝑇([𝐾]{𝐿}𝑇)                                                       (11) 

 

Let's rewrite (11) in the following form: 

 

 

𝜌𝐶𝑝 (
𝜕𝑇

𝜕𝑡
+ 𝑣𝑥

𝜕𝑇

𝜕𝑡
+ 𝑣𝑦

𝜕𝑇

𝜕𝑡
+ 𝑣𝑧

𝜕𝑇

𝜕𝑡
) =

𝜕

𝜕𝑥
(𝑘𝑥

𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑘𝑦

𝜕𝑇

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝑘𝑧

𝜕𝑇

𝜕𝑧
)                          (12) 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 8. Heat load of brakes: a) heat flow of the disc; b) temperature of the disc and pad; c) heat flow of the disc at 20 s; d) 

temperature of the pad at 20 s 

 

In general, the typical boundary conditions of thermal calculation can be attributed to [13]: 

- surface temperature: 𝑆𝑈𝑅𝐹𝑇:  𝑇 = 𝑇∗; 
- thermal dissipation on the surface: 𝑆𝑈𝑅𝐹𝑄:  {𝑄}

𝑇{𝑛} = −𝑄∗; 

- convection on the surface: 𝑆𝑈𝑅𝐹𝐶 :  {𝑄}
𝑇{𝑛} = ℎ(𝑇𝑝 − 𝑇𝑓), 

where: 𝑆𝑈𝑅𝐹𝑇 , 𝑆𝑈𝑅𝐹𝑄 , 𝑆𝑈𝑅𝐹𝐶  – surface temperature, flow and convection; 𝑇∗ - the temperature given at the 

surface; 𝑄∗ - the heat flux given at the surface; 𝑇𝑝 – surface body temperature; 𝑇𝑓 - environment temperature; ℎ - 

coefficient of convective heat transfer. 

In turn, the thermal expansion presented in the graph (Fig. 6a) can be described by the following 

conditions, which are relevant for the behavior of solid bodies: 

- thermal coefficient of volumetric expansion (measured in inverse degrees Kelvin, K-1):  

 

𝛼 =
1

𝑉
(
𝜕𝑉

𝜕𝑡
)                                                                                    (13) 
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If the volume expansion coefficient changes significantly with temperature, then the equations must be 

integrated: 

 
∆𝑉

𝑉
= ∫ 𝛼(𝑇)𝑑𝑇

𝑇0+50

𝑇0
                                                              (14) 

 

- thermal expansion of the area of a solid body: 

 

∆𝑆 = 2𝛼𝑆1∆𝑡,                                                                    (15) 

 

where: 𝑇0 - initial temperature; ∆𝑆 – area change (for example, brake pads or disc); 𝑆1 – starting area; ∆𝑡 – 

temperature change. 

 

Results of studies under variable load 

 

We have previously considered the behavior of the brake system consisting of a disc and pads under a 

constant external load (pressure) from hydraulic cylinder on them: the static position of the pads during the entire 

experiment lasting 20 s and constant travel (∆=1.501 mm). How will the system show itself if we increase the 

pressure in the hydraulic cylinder and set the pads movement according to the linear law (Table 2)? 

 

Table 2 

Dynamics of brake pads movement during the experiment (20 s) 

Moment of time 0 s 0.1 s 0.2 s 0.3 s 1 s 5 s 10 s 

∆ 0 mm 0.75 mm 1.5 mm 1.501 mm 1.508 mm 1.548 mm 1.598 mm 

 

 
0.1 с 

 
1 с 

 

 
5 s 

  
8 s 

 

Fig. 9. Stress-deformable state of the brake rotor 

 

This setting of boundary conditions leads to jamming of the brakes, because two factors come into play: 

the increase in pressure from the side of the pads; the thermal expansion of pads together with the disc. The stress 

map at the critical moment is presented in Fig. 9 - the plastic deformation of the disc is visually observed as a 

result of an attempt at inertial scrolling. As you can see, the experiment stopped at the 8th second - the further 

process is a static state of the system and does not require an assessment of its behavior (the disc cools down to 

the initial 22°C). Rotor and pad stress trends are demonstrated on Fig.10 – fluctuations on the graph mean the 
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ventilation channels influence on the stress meaning. Additional plasticity of the material during the long-term 

friction is provided by an increase in temperature as a result of pressure growth - the disc model received 32-37% 

higher temperature values compared to the previous experiment (unchanged travel of pads ∆=1.501 mm). Such 

results lead to the opinion of the necessity to arrange not only the structural optimization of the disc (ventilation 

channels), but also force to think about the relevance of using heat-resistant materials for the production of brakes: 

ceramics, which is a standard point in the premium segment of cars, sports cars, etc.  

 

 
(a) 

 
(b) 

Fig. 10. Brake stress under the variable load: a) disс stress graph; b) pads stress graph 

 

 

Conclusions 

 

1. The results of thermal behavior and stress-strain state of ventilated disc brakes presented in the work 

using the ANSYS Coupled Field Transient calculation environment are of a practical nature not only from the 

point of view of designing new vehicles with the appropriate selection of the optimal brake configuration for them, 

but also the optimization of existing structures. The research provides such valuable data as: temperature 

distribution along the rotor and pads during the friction process; heat dissipation, cooling and ventilation activities; 

selection of suitable materials for the production of friction pairs; creating an optimal configuration of the disc 

ventilation holes; determination of the required pressure in the hydraulic cylinders, taking into account the mass 

of the vehicle and the conditions of its operation (speed, convection of the medium, etc.). 

2. The results obtained in the conditions of a pads static position during the entire experiment lasting 20 s 

with their constant travel (∆=1.501 mm) allow us to quantitatively assess the influence of thermal expansion on 

the key performance indicators of the brakes as a result of friction (heating from 22°C to 35.04°C). This approach 

provides an understanding of the necessity to remove heat and ventilate the brakes, because the trends presented 

in the graphs indicate an exponential rather than a non-linear increase of the disc volume during heating, and 

suggest the inevitability of jamming / burning of the brakes (depending on the degree of vehicle movement inertia) 

with prolonged contact of friction pairs. 
3. The use of the ANSYS Coupled Field environment in conjunction with the boundary conditions proposed 

in the work allows you to form your own effective brake modeling methods, which is especially useful in the 

conditions of small design studios and workshops, which, in fact, are often involved in the production and design 

of lightweight vehicles: motorcycles, e-bikes, ATVs, scooters, buggies, etc. 
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Голенко К.Е., Диха О.В., Падгурскас Ю., Бабак О.П. Термічний та напружено-деформований 

стан пар тертя вентильованих дискових гальм легких транспортних засобів 

 

Робота представляє собою дослідження теплової поведінки та напружено-деформованого стану 

вентильованих дискових гальм легких транспортних засобів (скутерів, електробайків, квадроциклів, тощо) 

за допомогою розрахункового середовища ANSYS в різних режимах випробувань. Моделювання 

розподілу температури в роторі (диску) і відповідних гальмівних колодках визначається з урахуванням 

ряду факторів і вхідних параметрів під час операції гальмування: величини швидкості обертання, зазору 

між колодками і диском, швидкості прикладення навантаження, теплового розширення та ін. Чисельне 

моделювання перехідного теплового поля та поля напружень в області контакту колодок та диску 

здійснюється методом послідовного термоструктурного зв’язку проміжних розрахункових станів моделі 

гальм у середовищі ANSYS Coupled Field Transient. Для комплексної оцінки поведінки гальм в публікації 

розглядаються два підходи навантажень: стале (тривалістю 20 с) з фактором впливу у вигляді 

температурного розширення в результаті тертя контактних пар; лінійне навантаження з боку колодок на 

диск з відповідним зростанням тиску аж до моменту блокування обертання системи.  Також дослідження 

включає в себе оцінку впливу вентиляційних каналів ротора на характер плями контакту з гальмівними 

колодками (відкритий дальній контакт, контакт ковзання, залипання тощо). Крім того, показано, що 

незважаючи на лінійне зростання тиску колодок на ротор, графіки температур, об’єму (теплового 

розширення) і напружень мають параболічний характер із непропорційним зростанням показників. Такий 

результат змушує прийти до висновку, що неможливо передбачити поведінку гальм на основі аналізу 

короткого проміжку часу експерименту - проведення довгострокових аналітичних досліджень є 

надзвичайно важливим у випадку гальм. 

 

Ключові слова: тертя, гальмівний диск, гальмівні колодки, теплове навантаження, напружено-

деформований стан, тепловий потік, напруження фон Мізеса, контактний тиск, теплове розширення. 
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Abstract 

 

In this work, a multicriteria optimization of the technology for applying discrete coatings by electrospark 

alloying in the restoration of bronze parts is carried out. As criteria for optimizing the process of electrospark 

alloying, tribotechnical characteristics were chosen – the wear intensity and friction coefficient of the coating. As 

adjustable parameters, those design, technological and operational factors that have the greatest influence on the 

value of optimization criteria are used: coating material; lubricant; operating current; amplitude of electrode 

oscillations; sliding speed; specific load. As a result of experimental studies, experimental dependences of wear 

intensity and friction coefficient for various coating materials, sliding speeds and lubrication conditions were 

obtained. The use of multicriteria optimization of the electrospark alloying technology made it possible to obtain 

various alternative coating options and technological parameters of their application for various operating 

conditions. Of the studied coatings, the most effective is a two-layer coating with the first layer SP-2 and an outer 

layer of the base material bronze BrAZhMts 10-3-1.5, which is explained by the formation of wear-resistant areas 

based on Mn and Ni. Multiparametric optimization of the electrospark alloying technology made it possible to 

reveal a combination of structural and technological factors that ensure the formation of discrete coatings with 

high operational properties in the restoration of bronze parts. 

 

Key words: electrospark alloying, discrete coatings, bronze parts, multicriteria optimization, tribotechnical 

characteristics, design and technological factors. 

 

Introduction 

 

Parts made of bronze are one of the most common elements of plain bearings, which limit the resource of 

the entire unit. Taking into account the high cost of such material, its scarcity, rapid wear, as well as the fact that 

such parts are usually replaced with new ones during repairs, makes the problem of restoring bronze parts relevant 

[1-3]. 

The data of bronze parts fault detection results during the modern aircraft overhaul indicate that about 82% 

of the parts are rejected due to increased wear [4]. This is due to high specific loads at low sliding speeds, 

contamination of the contacting friction surfaces with abrasive, dust, condensate, as well as the non-additivity of 

the lubricant. Such units, in addition to plain bearings, include swivel-bolt joints, hinges with ball supports, etc. 

The search for progressive coating application technologies for the restoration of worn parts operating under 

extreme friction and wear conditions showed that the coating application methods that are traditionally used in the 

aircraft repair industry do not allow effective restoration of triboconjugations parts "steel – bronze". 

It was shown in [5-7] that one of the most effective and economical ways to eliminate wear of parts, 

including bronze ones, is the method of electrospark alloying (ESA). 

 

Literature review 

 

A number of works [8, 9, etc.] are devoted to the study of bronze parts restoration technology. 

The work [8] presents a classification of existing methods applicable to the restoration of bronze plain 

bearings. According to this classification, all methods can be divided into two main groups: 

http://creativecommons.org/licenses/by/3.0/
http://tribology.khnu.km.ua/index.php/ProbTrib
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- restoration of parts by applying coatings on worn surfaces; 

- restoration of parts dimensions by plastic deformation. 

At the same time, the author [8] concluded that the presented recovery methods require the final machining 

operation (boring, grinding, etc.) in order to obtain dimensional accuracy and surface roughness. Therefore, to 

restore the internal surfaces of bronze bushings, it is advisable to use combined processing methods. 

In works [5, 6], the effectiveness of bronze parts restoration by ESA was declared. The predominant area 

of ESA application is the restoration and hardening of worn parts. This method is based on the use of a concentrated 

energy flow – a spark discharge. ESA differs from a number of other methods of applying wear-resistant coatings 

by the low energy intensity of the process, environmental friendliness, and simplicity of the technological 

operation. The use of ESA technology does not require highly qualified service personnel, as well as the previous 

preparation of the hardened surface. ESA is characterized by small equipment dimensions, the possibility of local 

coating application on any conductive materials, and is implemented both in a mechanized version (with process 

automation) and in a manual vibrator version [10]. A comparison of the ESA method with gas-thermal spraying 

and laser processing shows the advantages of ESA in power consumption, equipment dimensions, material 

utilization rate, equipment cost and the need for surface preparation. In contrast to such mass technologies as gas-

thermal spraying and PVD, much less research has been devoted to the ESA method. This refers the ESA 

technology to developing and promising technologies. 

The ESA method is increasingly used in industry to improve the wear resistance and hardness of machine 

parts surface, including those operating at elevated temperatures and aggressive environments, to increase heat 

and corrosion resistance, as well as to restore worn surfaces of machine parts during repairs. Despite the fact that 

ESA has a positive effect on the wear resistance of the surface layer, its disadvantages often limit the 

implementation of this method for a wide range of machine parts. Such disadvantages include a change in surface 

roughness after ESA, uneven surface hardening, a negative effect of an electric discharge on the fatigue properties 

of products, and the appearance in some cases of a sublayer with reduced hardness in hardened products [5]. 

The undoubted advantage of the ESA method is the possibility of applying coatings of a discrete structure, 

which were studied by the scientific school of Professor B.A. Lyashenko. They found that a feature of most worn 

parts is the local nature and uneven wear. Taking into account this feature, the authors [5-7] developed a technology 

for restoring parts by applying discrete coatings of variable thickness in accordance with the diagram of uneven 

wear. 

The efficiency of applying discrete coatings is confirmed by a number of studies [6, 7, etc.]. In particular, 

it was shown in work [10] that the minimum wear of the coating is observed at continuity ψ = 55…65% (Fig. 1). 

 

 
Fig. 1. Dependence of wear on coating continuity [10] 

 

When applying discrete coatings, the ESA method has a number of advantages: 

- a single electric discharge makes it possible to ensure the stability of the dimensions and properties of a 

separate discrete section of the coating; 

- by changing the electrical parameters of each individual discharge, it is possible to apply discrete sections 

of various sizes and, above all, of various thicknesses; 

- by changing the pulse frequency or the speed of the electrode and the part relative movement, it is possible 

to control the number of discrete sections on the working surface of the part, as well as the continuity of the coating; 

- there is no need for additional heat treatment, since the discrete section is in a hardened state when the 

discharge heat is removed to the mass of the part; 

- the ability to restore large parts. 

In order to develop a technology for the restoration of bronze parts by ESA, it is very important to establish 

a connection between the tribotechnical characteristics of the studied surface and with design, technological, and 

operational factors. This will allow choosing coating options and technological parameters of their application for 

various conditions, providing the formation of coatings with high operational properties. 
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Purpose  
 

The aim of the work is to find optimal solutions and establish connections between tribotechnical 

characteristics – wear rate and friction coefficient with design, technological and operational factors when applying 

discrete coatings by the ESA method. 

 

Research Methodology 

 

Bronze BrAZhMts 10-3-1.5, which works in triboconjugations of aviation equipment in contact with steel 

30HGSN2A, was chosen as the base material for coating application. The chemical composition of the studied 

materials is presented in Tables 1-2. 

Table 1 

Chemical composition of bronze BrAZhMts 10-3-1.5, % [11] 

Fe Si Mn P Al Cu Pb Zn Sn Impurities 

2 - 4   0.1 1 - 2  0.01 9 - 11 82.3 - 88   0.03   0.5   0.1 0.7 

 

Table 2 

Chemical composition of steel 30HGSN2A, % [11] 

С Si Mn Ni S Р Сr Cu Fe 

0.27 - 0.34 0.9 - 1.2 1.0 - 1.3 1.4 - 1.8  0.025  0.025 0.9 - 1.2  0.3 94 

 

To apply coatings by the ESA method, a serial installation "Elitron-22" was used. The electrode materials 

were SP-1 and SP-2 alloys, the compositions of which are given in Table 3. 

Table 3 

Chemical composition of electrodes, % [6] 

Name of electrode 

material 

Composition of elements, % 

Al Si Mn Fe Ni Cu 

SP-1 3 - 5 1 38 - 40 1 - 2 34 - 35 16 - 17 

SP-2 - 8 - 9 36 - 37 1 - 2 33 - 34 1 

 

When choosing an antifriction wear-resistant material for ESA electrodes, Mn and Ni were taken as the 

basis. Manganese increases strength, plasticity and corrosion resistance. Nickel improves mechanical properties, 

increases heat resistance and corrosion resistance. A further increase in the tribotechnical characteristics of the 

electrode material was carried out by introducing alloying additives Al, Si, Fe and Cu [6]. 

Studies on friction and wear of experimental coatings were carried out on a universal friction machine 

SMT-1 according to the “disk – block” scheme. In this case, the lubrication conditions were provided by a special 

hermetic chamber. CIATIM-201, AMG-10, and Svintsol-01 were used as a lubricating environment [6]. 

For a rational choice of the discrete coating structure parameters, preliminary experiments were carried out 

to establish the dependence of wear resistance on the continuity characteristic ψ. The coefficient ψ is determined 

by the ratio of discrete coatings area to the total area.  

The size of the coating area was determined based on the results of metallographic analysis of the surface 

using digital image processing methods on a PC (Fig. 2). For this purpose, a program was written in C++ using 

the Qt framework and OpenCV image processing libraries [12]. 

 
Fig. 2. The interface of the program for determining the coating area: 1 – a selected area without an applied coating; 2 – not 

selected area with an applied coating; 3, 4 – controls that allow you to adapt the selection algorithm to the capabilities of the 

chamber; 5 – the ratio of not selected area to the total area of the photograph [12] 

 

Since the minimum wear of the coating is observed at continuity ψ = 55...65% (Fig. 1), in all further studies, 

continuity ψ = 0.6 was used. 
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Three types of coatings were tested: 

1) coating by electrode SP-1; 

2) coating by electrode SP-2; 

3) two-layer coating SP-2 + AP with the first layer SP-2 and the outer layer of the base material – bronze 

BrAZhMts 10-3-1.5.  

The composition of the coating SP-2 + AP is justified by the fact that for high anti-scratch resistance it is 

advisable to apply a thin layer of a softer material on a hard surface, which plays the role of a solid lubricant. In 

this case, defects in the form of scratches will not appear on the surface, which, in practice, always puts out of 

action the triboconjugation. The SPD method was used as the finishing treatment of the coatings. Hardening of the 

coating surface layers by the SPD method ensures the achievement of the required surface roughness and 

dimensions of parts without machining, as well as an increasing its hardness and wear resistance [13]. As criteria 

for optimizing the ESA process, the main tribotechnical characteristics are chosen – the wear rate and the friction 

coefficient of the coating. 

 

Results 

 

The use of expert evaluation methods and a series of screening experiments [14] made it possible to obtain 

an average a priori ranking of the input factors influencing the ESA process (Fig. 3). 

 
Fig. 3. Ranked number of factors: 1 – coating material; 2 – operating current of the ESA; 3 – amplitude of the ESA electrode 

oscillations; 4 – sliding speed; 5 – specific load; 6 – lubricant; 7 – coating thickness; 8 – electrode diameter; 9 – discreteness 

parameter ψ; 10 – application time 
 

Modeling the coating application process based on the analysis of the conducted ranking made it possible 

to determine the group of parameters that have the greatest influence on the value of the optimization criteria, and 

therefore, the following factors were included in the planning matrix as adjustable factors: coating material; 

lubricant; operating current of the ESA; amplitude of electrode oscillations; sliding speed; specific load. Controlled 

factors and levels of their variation are presented in Table 4. 

Table 4 

Controlled factors and levels of their variation 

Factors Levels of variation 

Coating material SP-1 SP-2 SP-2 + AP 

Lubricant AMG-10 Svintsol-01 CIATIM-201 

Operating current, A 1 - 4 

Electrode oscillation amplitude, mm 0,2 - 0,5 

Sliding speed, m/s 0,1 - 0,5 

Specific load, MPa 0 - 20 

 

Taking into account the data (Table 4), an experiment plan was generated. As a result of experimental 

studies, the tribotechnical characteristics of the studied coatings of a discrete structure were obtained when 

changing structural, technological and operational factors according to the plan of the experiment. Based on the 

results obtained, the dependences of the wear intensity and friction coefficient were constructed in accordance 

with the working matrix of experiment planning. Dependences of wear intensity and friction coefficient for various 

coating materials, sliding speeds and lubrication conditions are shown in Fig. 4-6. 
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a)                                                                             b)                                                                   c) 

Fig. 4. Tribotechnical characteristics (I and μ) for SP-1 coating under lubrication conditions:  

a – AMG-10 lubricant; b – CIATIM-201 lubricant; c – Svintsol-01 lubricant 

 
a)                                                                             b)                                                                   c) 

Fig. 5. Tribotechnical characteristics (I and μ) for SP-2 coating under lubrication conditions:  

a – AMG-10 lubricant; b – CIATIM-201 lubricant; c – Svintsol-01 lubricant 

 
a)                                                                             b)                                                                   c) 

Fig. 6. Tribotechnical characteristics (I and μ) for SP-2 + AP coating under lubrication conditions:  

a – AMG-10 lubricant; b – CIATIM-201 lubricant; c – Svintsol-01 lubricant 

 

According to X-ray structural analysis, the surface structure during friction represents a stable secondary 

structure, the quantitative characteristics of which sharply change at Рcr ≥ 3.5 MPa. The results of the conducted 

experiment made it possible to reveal the tribotechnical characteristics of the coatings under the conditions of 

using various lubricants, at various sliding speeds and specific loads. 

Of the studied coatings, the best results were shown by the SP-2 + AP coating. There are no scratches, 

cracks, or wear marks on the friction surface of this coating, which, in our opinion, is the result of wear-resistant 

areas formation based on Mn and Ni and is confirmed by micro-X-ray structural analysis data (Fig. 7). 

         
а)                                                                         b)                                                            c) 

Fig. 7. Depth of penetration and distribution of alloying elements from the SP-2 coating into the base: a – aluminum 

distribution; b – manganese distribution; c – nickel distribution 
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The influence of the lubricant type on the friction surface is shown in Fig. 8. 

 

     
а)                                                                         b)                                                                        c) 

Fig. 8. Microstructure of the friction surface of electrospark coatings in a lubricating environment: a – AMG-10; b – 

CIATIM-201; c – Svintsol-01 

 

It should be noted that the CIATIM-201 anti-friction consistent lubricant is currently used to reduce friction 

and wear in the control units of aircraft and their engines, landing gear attachment points and mechanisms for 

closing it, wheel bearings and various electrical units, weapons mechanisms, special equipment and devices. When 

operating aviation equipment for hydraulic systems, in which sealing parts and hoses are made of oil-resistant 

rubber, AMG-10 oil is currently used as a working fluid. Svintsol-01 lubricant is characterized by a high antiwear 

effect and is a product of the combination of CIATIM-201 consistent lubricant and 10% lead powder, and is used 

in the operation of aviation equipment in units where the high specific pressure takes place, as it has a high stability 

of the boundary lubricating skin due to the presence of lead powder, which plays the role of a solid lubricant and 

protects the contact surfaces from scratching [15]. 

A more complete and accurate assessment of the connection between tribotechnical characteristics and 

design, technological and operational factors is provided by regression analysis of experimental results. 

A graphical study of response surfaces shows a significant influence of factors on dependent variables (Fig. 

9). 

   
а)                                                                                                             b) 

Fig. 9. Wear intensity response function I from: 

a – operating current Io and amplitude of the electrode A oscillations; b – sliding speed V and specific load Rsp 

 

The thickness of the coating plays a significant role in optimizing the ESA technology. Therefore, a separate 

experiment was carried out to establish the dependence of the wear intensity I on the coating thickness hc while 

fixing the remaining ranked factors. The results are shown in Fig. 10. 

 
Fig. 10. Dependence of wear intensity I on coating thickness hc 

(V = 0.2 m/s, Rsp = 15 MPa, under conditions of Svintsol-01 lubrication) 

 

For normal operation of coatings SP-1 and SP-2, their thickness should not exceed 0.6 mm. Coating SP-2 

+ AP has a high anti-scratch resistance due to the plastic outer layer. This makes it possible to apply SP-2 + AP 

coating up to 0.8 mm thick without decreasing of operational characteristics. 

Thus, with the help of mathematical models, through multicriteria optimization, it is possible to obtain 

several alternative coating options and technological parameters of their application for various operating 

conditions. 
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Conclusions 
 

Multicriteria optimization of applying discrete coatings technology in the restoration of bronze parts by 

electrospark alloying led to the following conclusions: 

1. Alternative variants of coatings and technological parameters of their application for various operating 

conditions have been obtained.  

2. Of the studied coatings, the most effective is the two-layer coating SP-2 + AP with the first layer SP-2 

and the outer layer of the base material bronze BrAZhMts 10-3-1.5. This is explained by the formation of wear-

resistant sections based on Mn and Ni. 

3. Multiparametric optimization of the ESA technology made it possible to reveal a combination of 

structural and technological factors that ensure the formation of coatings with high operational properties. 
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Cолових Е.К., Шепеленко І.В., Черновол М.І., Магопець С.О., Солових А.Е., Катеринич С.Е. 
Оптимізація технології нанесення дискретних покриттів при відновленні бронзових деталей 

електроіскровим легуванням 

 

В роботі виконано багатокритеріальна оптимізація технології нанесення дискретних покриттів 

електроіскровим легуванням при відновленні бронзових деталей. В якості критеріїв оптимізації процесу 

обрано триботехнічні характеристики: інтенсивність зношування та коефіцієнт тертя покриття. Як 

регульовані параметри використано саме ті конструкційні, технологічні та експлуатаційні фактори, які 

найбільшою мірою впливають на вихідну величину: матеріал покриття; мастило; робочий струм; 

амплітуда коливань електроду; швидкість ковзання; питоме навантаження. В результаті проведення 

експериментальних досліджень отримано експериментальні залежності інтенсивності зношування та 

коефіцієнта тертя від питомого навантаження для різних матеріалів покриттів, швидкостей ковзання та 

умов змащення. Застосування багатокритеріальної оптимізації технології електроіскрового легування 

надало змогу отримати різні альтернативні варіанти покриттів та технологічних параметрів їх нанесення 

для різних умов експлуатації. Із досліджених покриттів найбільш ефективне – двошарове покриття з 

першим шаром СП-2 та зовнішнім шаром із матеріалу основи – бронзи БрАЖМц 10-3-1,5, що пояснюється 

утворенням зносостійких ділянок на основі Mn та Ni. Багатопараметрична оптимізація технології 

електроіскрового легування дозволила виявити поєднання конструкційних та технологічних факторів, які 

забезпечують формування дискретних покриттів з високими експлуатаційними властивостями при 

відновленні бронзових деталей. 

 

Ключові слова: електроіскрове легування, дискретні покриття, бронзові деталі, багатокритеріальна 

оптимізація, триботехнічні характеристики, конструкційні та технологічні фактори 
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Abstract 

 

The article is dedicated to the establishment of peculiarities of tire wear of garbage trucks during the 

transportation of solid waste. Using the planning of the first-order experiment with the first-order interaction 

effects using the Box-Wilson method, adequate dependencies of wear of garbage truck tires on the front and rear 

axles due to the transported mass of municipal solid waste and the mileage of the garbage truck were determined. 

It was established that, according to the Student’s criterion, among the investigated factors of influence, the wear 

of garbage truck tires on both the front and rear axles is most affected by the transported mass of municipal solid 

waste, and the least – by the mileage of the garbage truck. The response surfaces of the objective functions – tire 

wear of the garbage truck on the front and rear axles and their two-dimensional sections in the planes of the impact 

parameters are shown, which allow to visually illustrate the indicated dependences of the objective function data 

on individual impact parameters. The dependencies of the number of routes of the garbage truck to the maximum 

allowable tire wear on the front and rear axles were obtained. The response surfaces of the target functions – the 

number of routes of the garbage truck to the maximum permissible wear of the tires on the front and rear axles and 

its two-dimensional sections in the planes of the influence parameters, which allow to visually illustrate the 

specified dependencies, are obtained. The expediency of conducting further research on the influence of speed, 

unevenness of the road surface, weather conditions and other factors on the wear of garbage truck tires has been 

revealed. 

 

Key words: wear, tire, garbage truck, municipal solid waste, dependence, experiment planning. 

 

Introduction 

 

The increase of the wear resistance, reliability and durability of machine parts occupies a prominent place 

among the important tasks of utility engineering [1, 2]. The collection and transportation of municipal solid waste 

(MSW) to landfills, processing and disposal sites in Ukraine is mainly carried out by body garbage trucks in the 

amount of more than 3,800 units, which are able to compact solid waste, reducing transportation costs and the 

required area of landfills. At the same time, during the technological operation of solid waste transportation by 

garbage trucks, their tires are subjected to intensive wear. This is due to the significant carrying capacity and length 

of garbage trucks’ routes, since the placement of solid waste landfills takes place outside the sanitary zone, which 

in Ukraine is 30 km from populated areas. The wear and tear of the fleet of garbage trucks of municipal enterprises 

of Khmelnytskyi region during 2015-2020, despite the measures taken, almost did not change: it decreased only 

from 63% to 59% [3, 4]. According to the text of Resolution of the Cabinet of Ministers of Ukraine No. 265 [5], 

it is particularly important to ensure the use of modern highly efficient garbage trucks in the country’s communal 

economy, as the main link in the structure of machines for collection, transportation and primary processing of 

solid waste. This allows not only to solve a number of environmental problems, but also to increase the reliability 

of the work of utility companies as a whole. The planning of renewal, maintenance and repair of garbage trucks is 

facilitated by the determination of the regression dependencies of wear of garbage truck tires on the front and rear 

axles from the transported mass of municipal solid waste and the mileage of the garbage truck. 
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Analysis of recent research and publications 

In the materials of the work [6], an improved mathematical model of the operation of the solid waste dehydration 

drive in the garbage truck was proposed, which takes into account the wear of the auger, made it possible to numerically 

study the dynamics of this drive during start-up and determine that with an increase in the wear of the auger, the pressure 

of the working fluid at the inlet of the hydraulic motor of the drive increases, and the angular the speed and frequency 

of rotation of the auger are significantly reduced with a constant supply of working fluid. 

The power-law regularities of changes in the nominal values of the pressures at the hydraulic motor inlet, 

angular velocity and rotation frequency of the auger depending on the amount of its wear were determined, the 

last of which describes the deviation from the optimal rotation frequency of the auger during its wear and was used 

to determine the energy intensity of solid waste dehydration taking into account the wear of the auger. It was found 

that the wear of the auger by 1000 μm leads to an increase in the energy intensity of solid waste dehydration by 

11.6%, and, therefore, to an increase in the cost of their dehydration in the garbage truck and acceleration of the 

wear process. 

In the article [7] it was established that the resource of large-sized tires depends on many factors of the 

operating conditions, which lead to their premature scrap due to an excess of the thermal state and, as a result, 

peeling of the tread. Management of the thermal state of the large-sized tire, taking into account the rational loading 

of the dump truck during operation, allows you to achieve its maximum productivity. To determine the productivity 

in various conditions of operation of quarry dump trucks, the computer program "Optimal degree of loading" has 

been developed. 

The paper [8] provides an analysis and assessment of factors affecting the wear of large-size tires of quarry 

dump trucks, and recommendations for increasing their service life. 

In the materials of the article [9], the problem of increasing the accuracy of determining the resource of 

pneumatic tires of trucks is considered. Tire resource calculations were carried out using 5 methods, the results of 

which were compared with the results of an experimental study, which showed the need to refine the calculation 

methods to solve the specified problem. It is noted that the more accurately the tire resource is determined, the 

more qualitative the management of the technological processes of tire maintenance, their replacement, and 

scrapping will be, which will significantly affect traffic safety and the economic indicators of the operation of the 

motor vehicle enterprise. 

In work [10], a mathematical model of wear of a highly elastic wheel during its rolling on a rigid base was 

developed. In the proposed model, it is assumed that wear occurs in the sliding region, and the intensity of wear is 

a power-law function of pressure. A distinctive feature of the model is accounting for changes in contact pressures 

on the contact area, the size of the contact area, and the extent of the sliding sub-region during wear. An analytical 

dependence was obtained for calculating the length of the slip zone. The kinetics of the change in the radius of a 

highly elastic wheel during wear was studied. A theoretical-experimental method of calculating the wear life of a 

massive highly elastic wheel when rolling on a rigid base is proposed. An analysis of the influence of the relative 

slip on the durability of a massive highly elastic tire was carried out. The nature of the influence of the parameters 

of the wear law on the evolution of contact characteristics and the service life of the wheel was studied. 

In the article [11], on the basis of measurements of the height of the tire tread pattern in operating conditions, 

one-factor linear and quadratic models of the dependence of car tire wear on mileage were determined. Factors 

affecting critical wear of tires were analyzed: accumulation of fatigue stresses and destruction in the tread rubber 

array; increasing unevenness of wear along the length of the treadmill, which results in variability of the rolling 

radius; increasing the stiffness of the tire in the tangential and normal directions; reducing the diameter of the tire. 

Recommendations for reducing the wear of truck tires for the enterprise in real conditions have been developed. 

Recommendations for improving control over the technical condition of the company’s vehicle fleet based on 

information on the nature and intensity of tire wear are proposed. 

The authors of the paper [12] describe the specifics of the work of vehicles for collecting and transporting 

municipal solid waste to the places of their further handling, show the method of measuring the height of the tire 

tread pattern, and also give the average arithmetic values of the wear of garbage truck tires installed on the front and rear 

axles depending on from the transported mass of solid household waste and the mileage of the garbage truck. 

In the article [13], a regression analysis was used to determine a regularity that describes the dynamics of 

wear and tear of garbage trucks in general in the Khmelnytskyi region and allows it to be predicted and planned for 

the infrastructure of municipal enterprises (warehouse and renewal of garbage trucks, production base for 

maintenance and repair), which is necessary for solving problems of municipal solid waste management. 

However, as a result of the analysis of known publications, the authors did not find specific mathematical 

dependences describing the tire wear of the garbage truck on the front and rear axles on the transported mass of 

solid household waste and the mileage of the garbage truck. 

 

Aims of the article 

The aims is to study the influence of the transported mass of municipal solid waste and mileage on the wear 

of garbage truck tires. 

 

Methods 
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The determination of the dependencies of garbage truck tire wear on the front and rear axles from the 

transported mass of municipal solid waste and garbage truck mileage was carried out by planning a first-order 

experiment with first-order interaction effects using the Box-Wilson method [14]. The coefficients of the 

regression equations were determined using the developed computer program "PlanExp", which is protected by a 

certificate of copyright registration and is described in the work [15]. 

 

Results 

 

Preliminary processing of the results of experimental studies [12] showed that the wear of garbage truck 

tires on different axles is a function of the following 2 main parameters: 

 ,,, Lmfuu RAFA   (1) 

where uFA, uRA –tire wear of the garbage truck on the front and rear axles, respectively, m; m – transported 

mass of solid household waste, tons; L – mileage of the garbage truck, km. 

The study of the influence of the above factors on the wear of garbage truck tires when processing the 

results of one-factor experiments by the method of regression analysis is associated with significant difficulties. 

Therefore, in our opinion, it is advisable to conduct a multivariate experiment to obtain a regression equation for 

the response functions – wear of garbage truck tires on different axles using the planning of a multivariate 

experiment using the Box-Wilson method [14]. 

The average arithmetic values of wear of garbage truck tires installed on one axle depending on the 

transported mass of solid household waste and the mileage of the garbage truck are given in the table 1 [12]. 

Table 1 

Average arithmetic values of wear of garbage truck tires installed on one axle [12] 

№ 
Transported mass 

 m, tons 

Mileage L, km 

 

Wear, m 

 

Front axle Rear axle 

1 41,16 1304,63 98,715 136,8 

2 46,9 1021,63 114,55 157,5 

3 76,72 1597,33 191,5 245,8 

 

Based on the data in table 1, using the planning of the first-order experiment with first-order interaction 

effects, applying the developed software, which is protected by a certificate, after rejecting insignificant factors 

and interaction effects according to the Student’s criterion, the dependencies of wear of garbage truck tires on 

different axes depending on the transported mass of solid household waste and garbage truck mileage: 

52,507 0,006786 8,186 10FAu m L mL    ;  (2) 

43,539 0,003974 2,615 10RAu m L mL    .  (3) 

In the fig. 1 are shown the response surfaces of the target functions – tire wear of the garbage truck on the 

front uFA and rear uRA axles and their two-dimensional cross-sections in the planes of the influence parameters, 

constructed with the help of dependencies (2, 3), which allow you to visually illustrate the specified dependencies. 

It was established that according to Fisher’s test, the hypothesis about the adequacy of regression models 

(2, 3) can be considered correct with 95% reliability. The coefficient of multiple correlation was R = 0.99999, 

which indicates the high accuracy of the obtained results. 

  

а)      b) 
Fig. 1. Response surfaces of the target functions - the wear of the tires of the garbage truck on the front 

uFA and rear uRA axes and its two-dimensional sections in the planes of influence parameters: (а) – uFA = f(m, L), (б) – 

uRA = f(m, L) 
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According to the Student’s criterion, it was established that among the investigated factors of influence, the 

weight of municipal solid waste transported has the greatest influence on the wear of garbage truck tires on both 

the front and rear axles, and the least – the mileage of the garbage truck. 

To determine the number of routes of the garbage truck before the maximum allowable tire wear, we will 

use the following formulas: 

nmm 1 ;      (4) 

nLL 1 ;      (5) 

minhhu  ,      (6) 

where m1 – the carrying capacity of the garbage truck, tons; L1 – length of route of the garbage truck, km; 

n –the number of garbage truck routes; h – tread depth of a new tire, μm; hmin –minimum allowable tire tread depth, 

μm (for trucks hmin = 1 mm). 

After substituting formulas (4-5) into dependencies (2, 3), we will obtain dependencies of the number of 

routes of the garbage truck to the maximum allowable tire wear on the front and rear axles: 

   
2 4

1 1 1 1 min 1 1

4

1 1

2,507 0,006786 3,274 10 2,507 0,006786

1,637 10
FA

m L m L h h m L
n

m L





     



; (7) 

   
2 3

1 1 1 1 min 1 1

4

1 1

3,539 0,003974 1,046 10 3,539 0,003974

5,23 10
RA

m L m L h h m L
n

m L





     



. (8) 

In the fig. 2 are shown the response surfaces of the objective functions – the number of routes of the garbage 

truck to the maximum allowable wear of tires on the front nFA and rear nRA axles and its two-dimensional sections 

in the planes of the influence parameters, which are constructed with the help of dependencies (7, 8) and allow to 

visually illustrate the specified dependencies. 

 

 
a)  

b) 

 
c) 

 
d) 

 
e) 

 
f) 

Fig. 2. The response surfaces of the objective functions – the number of trips of the garbage truck to the maximum 

allowable wear of the tires on the front nFA and rear nRF axes and their two-dimensional sections in the planes of the 

impact parameters: (а) – nFA = f(m1, L1), (b) – nFA = f(m1, h), (c) – nFA = f(L1, h), (d) – nRA = f(m1, L1), (e) – nRA = f(m1, 

h), (f) – nRA= f(L1, h) 
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The determination the impact of speed, road surface irregularities, weather conditions and other factors on 

garbage truck tire wear requires further research. 

 

Conclusions 

 

According to Fisher’s criterion the adequate dependencies of tire wear of the garbage truck on the front and 

rear axles due to the transported mass of municipal solid waste and mileage of the garbage truck were determined. 

It was established that, according to the Student’s criterion, among the investigated factors of influence, the wear 

of garbage truck tires on both the front and rear axles is most affected by the transported mass of municipal solid 

waste, and the least – by the mileage of the garbage truck. The response surfaces of the objective functions – tire 

wear of the garbage truck on the front and rear axles and their two-dimensional sections in the planes of the impact 

parameters are shown, which allow you to visually illustrate the indicated dependences of the objective function 

data on individual impact parameters. The dependencies of the number of routes of the garbage truck to the 

maximum allowable tire wear on the front and rear axles were obtained. The response surfaces of the target 

functions – the number of routes of the garbage truck to the maximum permissible wear of the tires on the front 

and rear axles and its two-dimensional sections in the planes of the influence parameters, which allow to visually 

illustrate the specified dependencies, are constructed. The determination of the impact of speed, road surface 

irregularities, weather conditions and other factors on garbage truck tire wear requires further research. 
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Березюк О.В., Савуляк В.І., Харжевський В.О. Встановлення закономірностей зносу шин 

сміттєвозів під час транспортування твердих побутових відходів 

 

Стаття присвячена встановленню закономірностей зносу шин сміттєвозів під час транспортування 

твердих побутових відходів. За допомогою використання планування експерименту першого порядку з 

ефектами взаємодії першого порядку методом Бокса-Уілсона визначено адекватні закономірності зносу 

шин сміттєвоза на передній та задній осях від перевезеної маси твердих побутових відходів та пробігу 

сміттєвоза. Встановлено, що за критерієм Стьюдента серед досліджених факторів впливу найбільше на 

знос шин сміттєвоза як на передній, так і на задній осях впливає перевезена маса твердих побутових 

відходів, а найменше – пробіг сміттєвоза. Показано поверхні відгуків цільових функцій – зносу шин 

сміттєвоза на передній та задній осях та їхні двомірні перерізи в площинах параметрів впливу, які 

дозволяють наглядно проілюструвати вказані залежності даних цільових функції від окремих параметрів 

впливу. Отримано закономірності кількості рейсів сміттєвоза до граничнодопустимого зносу шин на 

передній та задній осях. Побудовано поверхні відгуків цільових функцій – кількості рейсів сміттєвоза до 

граничнодопустимого зносу шин на передній та задній осях та її двомірні перерізи в площинах параметрів 

впливу, які дозволяють наглядно проілюструвати вказані залежності. Виявлено доцільність проведення 

подальших досліджень впливу швидкості руху, нерівностей дорожнього покриття, погодних умов та 

інших факторів на знос шин сміттєвоза. 

 

Ключові слова: знос, шина, сміттєвоз, тверді побутові відходи, закономірність, планування 

експерименту. 
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Abstract 

 
The work scientifically substantiates the application of effective technology for the restoration of worn car 

parts by applying new electrospark coatings based on electroerosion nanomaterials. The developed technology is 
characterized by technological flexibility, cheapness, simplicity, does not require the use of expensive and scarce 
materials and equipment, and also meets the requirements of environmental safety. The proposed technology can 
be used to restore a wide range of parts for cars, tractors and other machines. Experimentally established 
dependences of the effect of the properties of electroerosive materials on the properties of electrospark coatings of 
restored car parts. It is shown that the content of nano-sized particles in the electrode material contributes to the 
improvement of the physical and mechanical properties of electrospark coatings. The dependences of the influence 
of the properties of electrospark coatings on the resource of restored car parts were experimentally established. It 
is shown that the resource of the shafts of turbocompressors restored according to the recommended technology is 
higher than the resource of new shafts by an average of 1.5 times. Experimentally established rational modes of 
applying wear-resistant coatings to worn shafts of turbocompressors, which provide the necessary complex of 
physical and mechanical properties of the coating and the given resource of the shafts as a whole (rotation 
frequency of the part, min - 1 - 50; electrode feed, mm/min - 0.4 ... 0.5). The characteristics of wear resistance of 
electrospark coatings of turbocompressor shafts, obtained using electroerosion nanomaterials, were studied. It is 
shown that the average value of the coefficient of friction of the electrospark coating was 0.146 instead of 0.486 
without coating, which is 3.3 times lower. According to the results of production tests, it was found that the 
duration of operation of the turbocharger, with the restored method of electrospark treatment with a nanostructured 
electrode shaft, increased by 2.1 times compared to a new industrially manufactured shaft. Thus, when abrasive 
material containing a fraction of 0.1...0.4 mm was introduced, the operating time of the turbocompressor with a 
restored shaft was 12.8 hours, and the operating time of the turbocompressor with a new shaft without wear of the 
nominal size was 8.1 hours. 

 

Key words: wear resistance, electrospark coatings, restoration, car parts, nanomaterials 

 

Introduction 

 

Restoration of worn parts of cars ensures saving of metal, fuel, energy and labor resources, as well as 

rational use of natural resources and protection of the environment. To restore the functionality of worn car parts, 

5...8 times less technological operations are required compared to the manufacture of new parts. 

Ensuring the necessary nomenclature of spare parts in the warehouses of motor transport enterprises 

requires large-scale development of the car repair infrastructure and scientifically based methods of organizing 

and managing the processes of restoring worn car parts. Solving this important scientific and national economic 

task leads to the objective need to have scientific principles for the organization of effective car repair production, 

which determined the choice of topic, the relevance of scientific research taking into account its theoretical and 

practical significance, the formulation of the goal, scientific novelty and tasks of the thesis. 

A car is a complex technical system, the elements of which have different characteristics of resistance to 

loss of operational condition. They are influenced by both internal structural factors, which depend on the purpose 

and properties of the element, and a set of external factors defined as the operating conditions of the car. 

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://tribology.khnu.km.ua/index.php/ProbTrib
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A modern car consists of 15...20 thousand parts, of which 7...9 thousand lose their original properties during 

operation, and about 3...4 thousand parts have a service life shorter than that of the car as a whole. All this causes 

the greatest idle time of cars, resource costs of operation [1]. 

 

Literature review 

 

A literature review showed that more than 70% of worn parts of automotive equipment could rationally be 

reused after restoration. This significantly reduces the resource costs of motor vehicle enterprises, and in addition, 

it is economically justified for repair production. The cost of restoring parts in most cases does not exceed 25-

30% of their cost, and with the qualified appointment of the restoration technology, 100% resource is achieved. 

The different service life of car parts is due to various reasons. The main ones are: performed functional purposes, 

a diverse range of loads, different types of friction in connected parts and different materials from which they are 

made, precision and quality of processing in connected parts. 

Automotive parts of the "shaft" type make up a large part of the nomenclature of parts that can be restored. 

In most cases, it is these details that limit the life of machine components and assemblies. The coefficient of their 

recovery during the overhaul of machines is 0.25 ... 0.95. The length of the restored shafts is 100...4000 mm, but 

more than 90% of these parts have a length of slightly more than 1000 mm. The diameters of the shafts are equal 

to 12...210 mm, but the diameter of 98% of the shafts does not exceed 60 mm. The average weight is about 3 kg. 

In parts of the "shaft" type, defects most often appear on the landing surfaces under the bearings and 

threaded surfaces. Surfaces under bearings are restored when worn more than 0.017...0.060 mm; surfaces of fixed 

joints (places for hubs with key grooves, etc.) due to additional parts - if worn more than 0.04...0.13 mm; surfaces 

of movable joints - when worn more than 0.4...1.3 mm; for sealing - more than 0.15 ... 0.20 mm. Key grooves are 

restored when worn with a width of more than 0.065...0.095 mm; slotted surfaces - when worn more than 0.2...0.5 

mm [2]. 

With the entire set of renewable shaft surfaces 46% wear to 0.3 mm; 27% – from 0.3 to 0.6 mm; 19% - 

from 0.6 to 1.2 mm and 8% - more than 1.2 mm (Fig. 1). 

 
 

Fig. 1. Analysis of defects of parts of the "shaft" type according to the degree of wear 

 

The main requirement that must be fulfilled during the restoration of shafts is to ensure the size and 

roughness of the restored surfaces, their hardness, the integrity of the coating, the strength of the adhesion of the 

applied layers to the base metal, as well as the symmetry, alignment, radial and end runout of the treated surfaces, 

parallelism of the lateral surfaces of the spline teeth and keyway grooves of the shaft axis. 

Shafts of automobile machinery are made mainly of medium-carbon and low-alloy steels. They are 

subjected to surface hardening with high frequency currents, cementation followed by hardening, normalization. 

After analyzing literary sources [1-4], it is customary to divide the defects of "shaft" type car parts into 

three groups: mechanical damage, chemical-thermal damage, and wear of "shaft" type car parts. 

Mechanical damage to parts of the "shaft" type occurs as a result of damage to its surface with cracks, risks 

and burrs, as well as possible bending of the shaft, its breakage or twisting. 

In a number of cases, risks and indentations are formed on the surfaces of parts of the "shaft" type, especially 

often this happens in shaft - sliding bearing combinations, as a result of contamination of the lubricant or the 

abrasive effect of particles of foreign origin. 

Micron-sized cracks may form on the surface of shaft-type parts due to the influence of excessive local 

loads, impacts from the ignition of the working mixture or other types, as well as overloading of the shaft. The 

appearance of this defect occurs in the most loaded places of "shaft" type parts - at the border of the bearing 

surface. This defect is especially common in crankshafts and camshafts of the internal combustion engine of cars. 

Shafts made of cast iron are most prone to cracks. In addition to cracks arising as a result of impact forces, fatigue 

cracks appear in the most stressed places of shaft-type parts as a result of long-term exposure to alternating loads. 

In some cases, cracks may appear as a result of thermal action. Also, mostly for shafts of small diameter (up to 1 

mm), bending and deformation of parts as a result of shock loads is characteristic. Such a defect appears, for 

example, in the turbocharger rotor shaft. As a result of fatigue of the metal, its breakdowns and breakdowns are 

observed during strong impacts of collapses, which often occur on cast parts. In a number of cases, due to the 
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influence of a large torque associated with overcoming temporary significant resistances during operation, "shaft" 

type parts are prone to twisting [5]. 

 

Purpose 

 

The purpose of the article is to improve, on the basis of scientific research, the technology of restoration 

and surface strengthening of worn car parts through the use of electrospark coatings based on electroerosion 

nanomaterials that provide a given resource. 

 

Research methodology 

 

The electroerosion dispersion (EED) method was chosen to obtain electrode material for electrospark 

alloying (ESA). An installation for obtaining nanodispersed powders from conductive materials was used as 

equipment, which includes a voltage regulator, a pulse generator, and a reactor (Fig. 2) [8]. 

 

 
 

Fig. 2. Structural diagram of the EED installation 

 

The voltage regulator regulates and sets the desired variable voltage in front of the pulse generator. In this 

installation, a single-phase voltage regulator РНО-260-10 TU 16.-817.298-70 is used, which allows you to adjust 

the output voltage of 0...260 V, and the current up to 45 A and the maximum power of 12 kW. 

A pulse generator (PG) is a device that converts industrial frequency alternating current and generates 

pulses of a given amplitude, duration and follow-up frequency. GI requirements: high efficiency, maintain the 

established dispersion mode in the EED process, i.e. stability in work [4-6]. 

The reactor is a container filled with distilled water as a working fluid and dispersing material loaded into 

it - scrap high-speed steel of the P6M5 brand. A desiccator 2–240 GOST 25336-82 was used as a reactor vessel. 

From the pulse generator, electrodes of the same brand as the dispersing object are immersed in the container. 

Installation parameters: voltage, pulse frequency and capacity of discharge capacitors are selected experimentally 

based on the dispersion material. 

The powder obtained from high-speed steel of the P6M5 grade by the EED method was studied on the 

equipment discussed below. 

To determine the coefficient of friction and the intensity of wear of the surface of the sample with an 

electrospark coating applied to it and the counterbody, the automated friction machine "Tribometer" of the 

company "CSM Instruments" (made in Switzerland) was chosen. The used device (Fig. 3) is connected to the 

computer for control. 

 
Fig. 3. Automated friction machine "Tribometer" 

 

The tests are carried out according to the standard "ball-disc" scheme, which allows the use of the Hertz 

Model, and comply with the international standards ASTM G99-959 DIN50324, that is, they can serve to evaluate 

the wear resistance of the sample and the counterbody. 

The surface roughness of the samples was examined using the "SURTRONIC 25" profilometer (Fig. 4). It 

has a multifunction RS-232 port, with which data can be transferred to a computer for further analysis using the 

optional advanced data processing software with the advanced analysis program "Talyprofile" or to a printer for 

printing. 
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Fig. 4. Profilometer "SURTRONIC 25" 

 

The program allows you to calculate parameters, set calculation modes in full accordance with international 

standards. Special functions allow you to obtain a vertical/horizontal display of the profile, artificially cut the 

profile, thereby simulating wear of the surface, enlarge individual sections for a more detailed examination, obtain 

an inverted profile, exclude from the calculation "unwanted" sections of the profile, remove the shape, and also 

calculate separately waviness and roughness. 

The electroerosion dispersion method is based on the melting of metal particles from the surface by a pulse 

of electric discharge. If a voltage (distance) is applied between the electrodes immersed in a liquid dielectric, when 

they approach (increase in voltage), the dielectric breaks down - an electric discharge occurs, and a plasma with a 

high temperature is formed. 

Since the time used in this method of processing electric pulses does not exceed 0.01 s, the released heat 

does not have time to spread deep into the material (metal waste), and even a small amount of energy is enough 

to heat, melt and vaporize a small amount of metal. In addition, the pressure developed by the plasma particles 

when they hit the electrode contributes to the emission (erosion) of not only molten, but also simply heated matter. 

Since electrical breakdown, as a rule, occurs along the shortest path, the most closely spaced parts of the electrodes 

are destroyed first. When approaching one electrode of a given shape (tool) to another (workpiece), the surface of 

the latter will take the shape of the surface of the first. The productivity of the process and the quality of the 

resulting surface are mostly determined by the parameters of the electric pulses (their duration, tracking frequency, 

pulse energy) [7]. 

 

Research results 

 

In order to identify the distribution of elements on the surface of the electroerosion powder, X-ray spectral 

microanalysis was performed with the help of the scanning electron microscope "QUANTA 600 FEG" and the X-

ray radiation analyzer of the company "EDAX" integrated into it and the following results were obtained (Fig. 5). 

 

 
 

Fig. 5. Points of X-ray spectral microanalysis of powder 

 

In the Table 1 shows the results of X-ray spectral microanalysis of powders. 

Table 1 

Results of X-ray spectral microanalysis of P6M5 high-speed steel powder 

Element C O Al Mo V Cr Fe W 

Weight, % 7,145 9,5 0,15 1,95 0,64 1,9 73,37 5,17 

 

Thus, X-ray spectral microanalysis made it possible to determine the elemental composition of micro-

objects of powder particles obtained by electroerosion dispersion of high-speed steel waste based on the 

characteristic X-ray radiation excited in them. 
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Fig. 6. X-ray spectral microanalysis of P6M5 powder at point 1 

 

According to the results of the presented generalized data, it was established that the main elements in the 

powder obtained by the method of electroerosion dispersion of tool high-speed steel of the P6M5 brand (GOST 

19265-73) in distilled water are: oxygen, iron, carbon, molybdenum and tungsten [8, 9]. 

It was established that when using stainless steel AISI 420 as a control (ball), after multiple passes over the 

tested surface of the experimental samples (substrates made of 30XHSA steel), the following occurs on the 

corresponding friction path: 

- 100 m - intensive wear of the counterbody; 

- 200 m − intensive wear of the counterbody; 

- 500 m - intensive wear of the counterbody. 

The results of tribological tests of samples using different friction paths are presented in Fig. 7, a-c. 

The results of tribological tests of the friction surface of samples made of steel 30 HDSA, as well as 

electrospark coatings from BRS, indicate a high coefficient of friction of the latter. It was also noted that a jump 

occurs during tests of tribological samples from BRS. In this case, this is due to high roughness (Ra = 2.14 μm) 

and wear is characterized by smoothing of hard protrusions on the surface of the sample (Fig. 7, a-c) [10-12]. 

 
Fig. 7. The results of tribological tests of samples with different friction paths: 

a - 100 m; b - 200 m; c - 500 m 

 

The optical image of the wear spot of the counterbody (ball) after passes over the investigated surface of 

the experimental samples (electrospark coatings from BRS and substrate from 30KhGSA steel) is presented in 

Fig. 8, a-d. 
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a) friction path – 100 m b) friction path – 500 m 

  
c) friction path – 100 m d) friction path – 500 m 

Fig. 8. Optical image of the wear spot of the counterbody (ball) after passes over the investigated surface of the 

experimental samples: electrospark coatings from BRS (a, b); substrates made of steel 30KHHSA (c, d) 

 

The optical image of the wear spot showed that when using stainless steel AISI 420 steel as a control (ball) 

[13], after multiple passes over the tested surface of the experimental samples (electrospark coatings with BRS), 

the following occurs on the corresponding friction path: 

- 100 m - adhesion of sample wear products to the counterbody; 

- 200 m - adhesion of sample wear products to the counterbody; 

- 500 m - partial wear of the counterbody and sticking of wear products of the sample on the counterbody. 

It was experimentally established that the roughness of samples with electrospark coating is Rz 13.2 μm 

(Ra 2.14 μm). 

It was experimentally established that electrospark coatings obtained with electrode material from 

electroerosion powders of high-speed steel have a thickness from 19.07 microns to 31.42 microns. 

 

Conclusions 

 

1. The proposed technology can be used to restore a wide range of parts for cars, tractors and other 

machines. 

2. Experimentally determined dependences of the influence of the properties of electroerosive materials on 

the properties of electrospark coatings of restored car parts. It is shown that the content of nano-sized particles in 

the electrode material contributes to the improvement of the physical and mechanical properties of electrospark 

coatings. In particular. the average value of the microhardness of the electrospark coating (4.36 HV), obtained by 

the electrode material from electroerosion powders of high-speed steel, is greater than the microhardness of the 

substrate (2.09 HV) by up to 2.1 times. 

3. Experimentally determined dependences of the properties of electrospark coatings on the service life of 

restored car parts. It is shown that the resource of the shafts of turbocompressors restored according to the 

recommended technology is higher than the resource of new shafts by an average of 1.5 times. 

4. Experimentally established rational modes of applying wear-resistant coatings to worn shafts of 

turbocompressors, which provide the necessary complex of physical and mechanical properties of the coating and 

the given resource of the shafts as a whole (rotation frequency of the part, min - 1 - 50; electrode feed, mm/min - 

0.4 ... 0.5). 

5. The characteristics of wear resistance of electrospark coatings of turbocompressor shafts obtained using 

electroerosion nanomaterials were studied. It is shown that the average value of the coefficient of friction (µ) in 

the electrospark coating was 0.146 instead of 0.486 without coating, which is 3.3 times lower. 
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Марченко Д.Д., Матвєєва К.С. Підвищення зносостійкості відновлених деталей автомобілів 

шляхом застосування електроіскрових покриттів 

 
У роботі науково обґрунтовано застосування ефективною технології для відновлення зношених 

деталей автомобілів шляхом застосування нових електроіскрових покриттів на основі електроерозійних 

наноматеріалів. Розроблена технологія відрізняється технологічної гнучкістю, дешевизною, простотою, не 

вимагає використання дорогих та дефіцитних матеріалів та обладнання, а також відповідає вимогам 

екологічної безпеки. Пропонована технологія може бути використана для відновлення широкої 

номенклатури деталей автомобілів, тракторів та інших машин. Експериментально встановлені залежності 

впливу властивостей електроерозійних матеріалів на властивості електроіскрових покриттів відновлених 

деталей автомобілів. Показано, що зміст нанорозмірних частинок в електродному матеріалі сприяє 

покращенню фізико-механічних властивостей електроіскрових покриттів. Експериментально встановлені 

залежності впливу властивостей електроіскрових покриттів на ресурс відновлених деталей автомобілів. 

Показано, що ресурс валів турбокомпресорів, відновлених за рекомендованою технологією вище ресурсу 

нових валів у середньому в 1,5 рази. Експериментально встановлені раціональні режими нанесення 

зносостійких покриттів на зношені вали турбокомпресорів, що забезпечують необхідний комплекс фізико-

механічних властивостей покриттям та заданий ресурс валам в цілому (частота обертання деталі, хв - 1 - 

50; подача електрода, мм/хв - 0,4 ... 0,5). Вивчено характеристики зносостійкості електроіскрових 

покриттів валів турбокомпресорів, отриманих з використанням електроерозійних наноматеріалів. 

Показано, що середня значення коефіцієнта тертя у електроіскрового покриття склало 0,146 замість 0,486 

без покриття, що в 3,3 рази нижче. За результатам виробничих випробувань встановлено, що тривалість 

роботи турбокомпресора, з відновленим методом електроіскрової обробки наноструктурним електродом 

валом, у 2,1 рази збільшилася по порівнянні з новим промислово виготовленим валом. Так, при введенні 

абразивного матеріалу, що містить фракцію розміром 0,1….0.4 мм час роботи турбокомпресора з 

відновленим валом становило 12,8 годин, а час роботи турбокомпресора з новим валом без зносу 

номінального розміру становило 8,1 год. 

 

Ключові слова: зносостійкість, електроіскрові покриття, відновлення, деталі автомобілів, 

наноматеріали. 
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Abstract 

 

The paper considers possibilities to increase the wear resistance, corrosion resistance, and service life for 

parts of machines and mechanisms via their hardening and renovating using electric arc coatings characterized by 

high density, adhesion strength, and micro hardness. Also, the possibility of controlling the properties of restored 

surfaces owing to choice of the related equipment with required structure and characteristics in order to prolong 

the service life of machinery parts is shown. The right choice of equipment for spraying makes it possible to 

increase the speed and temperature of the spraying gas and particles, reduce the droplet diameter, increase the 

density and reduce the oxidation of coatings. The influence of spray factors such as the flow rate and pressure of 

working gases, composition of combustion mixture, spraying distance, dispersion of the spray, properties of wire 

material, etc. on the properties of the coatings obtained has been investigated. 

 

Key words: coatings, wear resistance, adhesion strength, electric arc spraying  

 

Introduction. The state of the problem and the purpose of the research. In the practice of restoring and 

hardening parts through the use of hardening protective coatings, extensive experience has been accumulated in 

the application of coatings by methods of gas-thermal spraying (GTS) [1,2]. The reasonability of using GTS is 

evidenced by the appearance of a number of special firms for manufacture of equipment and materials for spraying, 

for example, Metko, Wall Cobmonoy Corp. Linde Div., Union Carbide Corp. et al. [3]. The produced domestic 

and foreign GTS units [1,2], spray materials [3], and published recommendations have made it possible to solve a 

series of items related to the repair, restoration, and prolongation of the service life of parts [1,2]. 

In the development of techniques for restoration of parts, it is necessary, of all the possible GTS methods 

(Table 1) [1,2], to choose such one that provides the longest service life of a part and the lowest cost of its recovery 

as well as can be fairly versatile, simple, and easy to implement [3]. When choosing a method for GTS, it is 

necessary to consider the basic conditions for high-quality coating formation [4]:  

1) thermal effects on the part must prevent the phase or structural transformations in the base metal;  

2) participation of the base metal in the coating must be negligible; 

3) in the contact zone, no relaxation process capable to change its phase composition and structure 

should arise. 

Таble 1  

Characteristics of spraying modes  

Parameter  Spraying mode 

 

 

 Electric arc Gas flame Plasma  Detonation 

Efficiency, kg/h 3 - 31 1 -10 0.5 - 8.0 0.1-  6.0 

Coefficient of material consumption  0.8 -0.9 0.8 -0.95 0.4 -0.9 0.3 - 0.6 

Adhesion strength, МPа tо 40 tо 50 tо 60 tо 200 

Temperature of part heating, °С 100 -150 100 -150 150 -200 100 -150 

http://creativecommons.org/licenses/by/3.0/
http://tribology.khnu.km.ua/index.php/ProbTrib
https://doi.org/10.31891/2079-1372-2023-107-1-73-80
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From the standpoint of these conditions, the use of electric arc spraying (EAS) is promising [4,5]. In the 

world practice of hardening, recovery, and anticorrosion protection, EAS has become widespread as the most 

technologically advanced and productive method (productivity is 3-4 times that for flame spraying) [4,5]. EAS 

is widely used in the European countries and displaces the traditional gas-flame method [3]. This is due to the 

simplicity of the equipment, the availability of energy source for metal melting, higher thermal efficiency, which 

reaches 57% compared to 13 and 17% for gas and flame spraying [4,5]. The quality of EAS coatings are 

practically the same as that of coatings produced by plasma and detonation methods, and the coating-to-base 

adhesion strength is greater than in the case of flame spraying. In [4,5], information is given about the advantages 

of EAS over surfacing in terms of labor input and consumption of electrode material: duration of surfacing is 1 

h 10 min and wire consumption 1.3 kg, while for EAS these parameters are 24 min and 0.95 kg, respectively.  

The equipment on which coating is performed is relatively simple and light and can be moved fairly 

quickly (Fig. 1). The part dimensions do not limit the use of EAS [4,5]. This method is effective and economical 

in the manufacture and renovation of parts in the conditions of repair enterprises and small workshops with a single 

production [4,5]. 

 

 

Fig. 1. The electric arc spraying process 

 

Despite the large number of innovations concerning EAS, researches on the improvement of this method 

and required equipment are actively being carried out and has become aimed at activating the spray process using 

various techniques, methods, and devices. The spray process activation is the basis for improving the technology 

and equipment for deposition of high-density wear-resistant layers. In practice, the following procedures for spray 

process activation have been implemented [1-7]: 

- intensification of mixing working gases; 

- provision of sprayed particles and the substrate with additional energy via heating them; 

- diminution of the sprayed particles size; 

- activation of the particle and the substrate surfaces by mechanical methods (increase in roughness) or 

by reduction of oxides; 

- increase in the enthalpy of the spray flux by introducing thermo-reactive components; 

- coating with the use of external effects (ultrasonic waves, electromagnetic fields, etc.; 

- heat treatment or chemical heat treatment of coatings, etc. 

Preheating of the substrate was established to lead to decreasing the rates of crystallization, cooling of 

falling particles, and developing their chemical interaction with the substrate. As a consequence, adhesion strength 

increases. However, in the case of heating above 500 K, the rate of oxide formation increases and adhesion strength 

decreases. Moreover, preheating to 500 K is impossible when thin-walled parts are coated because of unavoidable 

thermal deformation, and this operation is undesirable in restoring parts that operate under alternating or cyclic 

loads (as fatigue cracks grow under heating). The use of activation techniques which intensify heat exchange 

processes in the “jet-particle” system and increase the dynamic parameters of particles, and allows reducing the 

wire particle size or of those that allow modifying (strengthening) the sprayed layer seems to be most expedient 

means [8-10]. 

 

The aim of the work - was set up to increase the wear resistance and service life of parts via combining 

EAS coatings characterized by high density, adhesion strength, and microhardness due to the activation of the 

spray process and nitriding of the coatings sprayed. 

 

Study of the spraying process and the influence of its factors on the properties of EAS coatings.  

 

The EAS process coating is the result of the following physicochemical interactions: the air flow with the 

wire melt and the formation of a jet of sprayed particles; transformation of the kinetic energy of the sprayed 

particles into the work of deformation during their mechanical contact with the part surface, and the transfer of 

internal (thermal) energy from the particles to the part. On the part surface, a coating layer is formed (Fig. 2), the 

properties of which depend on the characteristics of physicochemical processes listed above. 
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The study of the microstructure was carried out on unetched and etched sections using a light microscope 

"MeF-3" company "Reichert" (Austria) at a magnification of ´100, ´200, ´500. Photos of microstructures are 

attached (Fig. 2). The study was also carried out on a CamScan scanning electron microscope (Oxford Instruments, 

England) with an X-ray energy dispersive analyzer (Fig. 2). The morphology (topography) of the coating surface 

was studied in the mode of reflected electrons at an accelerating voltage of 10–20 kV. The resolution of this SEM 

is 70 Å. Two types of studies were used: the spectrum from the surface of a thin section and the structure of the 

surface in combination with Y-modulation, i.e. - slow scanning of the electron beam along the line with the 

registration of X-ray radiation for each element with and the construction of concentration distribution curves. In 

addition, spot X-ray microanalysis was carried out according to the program of quantitative analysis. The research 

results are presented in tables (Fig. 2). The color in the photograph determines the concentration: black - the 

complete absence of the element, white - 100% presence, transitional colors indicate an intermediate concentration. 

In the second case, we obtain the distribution of three or more elements at the same time, while each of the elements 

is assigned a conditional color. All other colors are formed when the three main colors are superimposed and 

indicate the joint presence of elements in one or another part of the sample, and the concentration in this case is 

determined by the density of the color. The application of this research program gives very good results for 

understanding the mechanisms of diffusion processes. 

 

 
                        

x 200     (b) x250 

 

Спектр Al Si P Cr Mn Fe Ni 

уч3(1) 6.23 0.32 0.10 10.58 0.26 82.56 0.15 

уч3(2) 6.69 0.37 0.20 9.97 0.20 82.92 0.05 

уч3(3) 5.27 0.12 0.21 9.09 0.06 85.25 0.01 

уч3(4) 4.45 0.12 0.04 9.12 0.23 86.12 0.09 

уч3(5) 3.98 0.21 0.04 12.47 0.05 83.36 0.04 

уч3(6) 4.09 0.15 0.14 7.26 0.10 88.40 0.15 

уч3(7) 5.32 0.08 0.10 6.19 0.04 88.20 0.27 

уч3(8) 5.26 0.22 0.09 10.21 0.20 83.99 0.02 

уч3(9) 3.59 0.20 0.03 8.88 0.16 87.07 0.07 

уч3(10) 4.44 0.27 0.21 10.75 -0.14 84.59 0.12 

 
g) 

Fig. 2. Microstructure of EAS coatings from wire from powder wire FMI-2 (a, b)  

and distribution of alloying element (g)  
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Studies of the effect of the average particle size of spray wires from 40Kh13, 12Kh18N10T, nichrome 

and powder wire FMI-2 on the physico-mechanical properties of coatings revealed (Fig. 3) that coatings made 

from steel wires show a decrease in adhesion with increasing porosity, whereas nichrome does not obey this rule. 

As seen in the figure, the curve of accumulated weight wear of tempered steel has a characteristic stage of running-

in and a steady wear stage with almost linear dependence of the weight wear on the friction path. For EAS coatings, 

the stages of steady wear periodically alternate with the relatively short-term stages of accelerated wear, i.e., wear 

of EAS coatings is pronouncedly cyclical. The highest averaged weight wear rate was 0.39 mg/m (Table 2).  

 

Fig. 3. The effect of the average size of sprayed wire particles of powder wire FMI-2 (1) and of steels 40Kh13, 

Kh18Н10Т (2, 3), and nichrome (4) on the adhesion strength (1, 2, 4) and porosity (3) of coatings 

Тable 2  

Wear rate and coefficient of dry friction for EAS coatings and tempered powder wire FMI-2  

 

 

 

 

 

 
Accelerated tribological tests of samples with EAS coatings from powder wire FMI-2 were conducted on 

an upgraded machine of the 2070 SMT-1 type. Upon spraying, an irregular coating structure was formed via 

layered stacking of molten steel droplets (Fig. 5). Such a structure provides damping of elastic excitations caused 

by friction. After the tribological tests, no noticeable wear of EAS coatings was detected for 9 h. 

 

          
  х 20                                                                                     х 25 

                     
х 100                                                                                 х 300 

Fig. 5. Surface topography of EAS coating after 9 h testing obtained with a scanning electron microscope 

Control of structure formation processes in sprayed coatings 

 

Material Wear rate, mg/m Coefficient of friction  

Powder wire FMI-2  0.12 0.82 – 0.93 

EAS coating  0.27 0.83 – 0.96 

EAS coating 0.39 0.94 – 1.02 
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A number of researchers have noted that the structure of coatings obtained by spraying the same wire 

material by different modes can differ not only in the number of pores, but also in the phase composition [1-7]. 

This paper presents the results of studies of the structural features of EAS coatings. As spray materials, FMI-2 

powder wires with a diameter of 2 mm were used. Spraying was performed using an apparatus for EAS in the 

following modes: 

- mode 1: spaying of metal melted in an electric arc with a reactive jet of combustion products of propane/air 

mixture with an excess of propane (reducing atmosphere); 

- mode 2: spraying of metal melted in an electric arc with a reactive jet of combustion products of the 

propane/air mixture with an excess of air (oxidizing atmosphere); 

- mode 3: spraying of metal melted in an electric arc with a fast air jet.  

To improve the adhesion of coatings to a steel 3 substrate, an intermediate layer from powder wire FMI-

2 was created. The velocity of molten particles was 120–130 m/s (modes 1and 3) and 400–500 m/s (modes 1 and 

2). The sizes of the particles from which the coatings were formed fell in the range of 5–40 µm. The dominant 

amount of oxides was formed as a result of the molten particles/air contact. In the work, the effect of the spraying 

air flow rate on the amount of oxygen in the coatings obtained by EAS (mode 3) was studied (Fig. 6). Here the 

oxygen content in EAS coatings was 2.5–3 times that in gas-flame ones (Fig. 6), with achieving the maximum 

concentration 3.8% at flow rates of about 0.5 m3/min. An XRD analysis (diffractometer DRON-3.0, 

monochromatic CoK radiation, V = 30 kV, I = 10 mA) revealed that the phase composition of the coatings 

includes: -phase (martensite), -phase (austenite), oxides Fe3O4, -Fe2O3 (traces), and Cr2O3 (traces) (Fig. 6).  

 

Fig. 6. Fragments of XRD patterns  (CoK) from surface layers of gas-thermal 

coatings obtained under modes1-4 

 

The hardness of the coatings obtained using various spray schemes was within the HV range of 2800 - 

3500 MPa. Activation of EAS (AEAS) in a reducing atmosphere leads to the formation of dense coatings with a 

porosity of 2 - 5% and hardness HV = 3000 MPa, characterized by low content of residual austenite (V  20 vol%) 
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and oxides. The lattice parameters of martensite and austenite are а= 0.2875 nm and а= 0.3592 nm, respectively. 

AEAS by a reactive jet with an excess of air provides the formation of a layer with a porosity of 2 - 5% and 

hardness HV = 3500 MPa, characterized by substantial content of oxidation products. The content of residual 

austenite in the coating is V  20 Vol. %. The lattice parameters of martensite and austenite are а= 0.2875 nm 

and а= 0.3592 nm, respectively. Coatings obtained by spraying with air had a hardness of HV=3200 MPa and a 

residual austenite content of V18 vol% at the porosity 6–8%. The XRD data fixed the highest concentration of 

oxidation products in the coating after EAS with air. Lattice parameters were а = 0.2875 nm and а= 0.3596 nm 

for martensite and austenite, respectively.  

The results of the study of the phase composition and hardness of coatings from powder wire FMI-2 

indicate the influence of the deposition technique on the structure and properties of the layer obtained. A distinctive 

feature of deposited layers is the presence of an anomalously large amount of residual austenite (up to 30 vol%) 

and oxides. Generally, the content of residual austenite in hardened powder wire FMI-2 does not exceed 3 - 5 vol% 

[11-13].  

One of the reasons for the appearance of the “austenitic effect” in coatings is a higher concentration of 

alloying elements (chromium and carbon) owing to the complete dissolution of chromium carbides during melting 

of the wire and saturation of the molten droplets with carbon from the propane flame. This is confirmed by the 

absence of Cr23C6 carbide particles in the coating. While analyzing the causes of austenite stabilization in the layer, 

one should keep in mind that under spraying surface layers are heated to 500–670 K. As a result, the sprayed 

coating undergoes isothermal aging at 520–670 K during its formation and cooling, which promotes thermal 

stabilization of austenite [1-7]. A factor that increases the stability of austenite in the sprayed layers is saturation 

of the molten droplets with carbon during melting and spraying with propane flame (Table 3). 

 

Table 3 

The influence of the composition of combustion mixture forming the spray  

on the carbon and oxygen contents in EAS coatings from powder wire FMI-2  

Technique 

of spraying  

Air/propane volume ratio 

in mixture  

Oxygen content 

in coatings, % 

Carbon content 

in coatings, %  

1 (Gas flame) propane/oxygen ratio 1/4 1.3 0.6 

2 (AEAS) 18 1.4 0.5 

3 (АEAS) 30 2.2 0.4 

4 (АEAS) clean air 3.3 – 3.5 0.4 

 

The low velocity of molten steel particles and high concentration of carbon-containing propane in the 

combustion products contribute to a deeper saturation of molten droplets with carbon. These circumstances are 

associated with a high content of residual austenite in coatings obtained by the gas flame procedure (technique 1).  

The smaller amount of austenite in coatings obtained by AEAS in the reducing atmosphere of the spray 

torch (technique 2) is due to the higher flight velocity of the molten particles, which is characteristic for this 

technique. In this case, the processes of diffusion saturation of the droplets with carbon from the reducing 

atmosphere of the products of propane/air mixture combustion do not have enough time to complete (flight time 

of molten droplets in the atmosphere of combustion products is not more than 5 10-4 s), and the content of residual 

austenite in the layer decreases to ~ 20 vol%.   

An increase in the oxygen concentration in the mixture is not accompanied by change in the amount of 

residual austenite in the coating obtained under conditions of supersonic velocities of molten particles (technique 

3) and at relatively low particle velocities (technique 4). In both cases, the content of residual austenite in the layer 

does not exceed 20 vol%. The carried-out studies made it possible to conclude that for EAS there are such regimes 

and steels that can provide the formation of a large amount of metastable austenite in the coatings, which during 

the performance of the tribocoupling will turn into martensite. The experiments established a relation between the 

temperature of the beginning of martensitic transformation, TM, for the wire material and the amount of metastable 

austenite formed in the resultant coating (Table 4) [1 -7]. 

In steels of group 1, as well as in corrosion-resistant martensitic steels, the temperature TM is within 550 

- 700 K. When spraying wires from these steels, the volume content of metastable austenite reaches 45%. 

In the case of spraying wires from steels of the first two groups, the preservation of a large amount of 

metastable austenite can be prescribed to the high rate of crystallization of steel particles in the course of forming 

the sprayed layer and slowing down its cooling rate in the martensitic transformation region. The decrease in 

austenite stability in coatings from steels of the third group, sprayed over 2500 K, is explained by the effect of 

manganese and chromium contained in the steel on the temperature range of its martensitic transformation. Thus, 

a decrease in the manganese content from 5% to 1% leads to an increase in the temperature from 270 to 470 K [1-

7]. In this regard, one of the possible ways to increase the TM temperature is reduction in the chromium or 

manganese content in the austenitic phase of steels by oxidizing it during spraying. 

 



Problems of Tribology 79 

 

Таble 4 

Metastable austenite content in EAS coatings obtained by spraying various steel grades 

Group 

of steels 

Steel grade Теmperature 

ТМ, К 

Temperature of heating 

under spraying, К 

Content of austenite in 

coating Vol % 

1 09G2S, 40KhN, 

40Kh13 

FMI-2 

 

550–700 

1700-2000 

2100-2500 

> 2600 

25-45 

17-20 

< 6 

2 9KhS, Kh12МF, 

9Kh12, Kh6VF, 

35KhNМ, 

40KhFVA, 65G 

 

420–540 

1700-2100 

2200-2500 

> 2500 

15- 25 

8 -12 

< 6 

3 

 

 

08Kh18N10, 

12Kh18N10Т, 

110G13 

 

70–110 

1700-2000 

2000-2500 

> 2500 

95 - 98 

90 - 95 

90 - 95 

 

Conclusions 
 

The present work recommends to increase the wear resistance, corrosion resistance, and service life of 

parts via hardening and renovating them using combined EAS coatings characterized by high density, adhesion 

strength, and microhardness due to activation of the spraying process. It has been shown that by properly choosing 

design parameters and characteristics of equipment for EAS, it is possible to control the properties of restored 

surfaces in order to increase the service life of SMM parts. The right choice of equipment for spraying will allow 

one to increase the speed and temperature of the jet of spraying gas and molten particles, decrease the droplet 

diameter, increase the density, and reduce the oxidation of coatings. Moreover, the phase composition and 

microhardness of coatings obtained by spraying wires from austenitic and martensitic steel were investigated. The 

presence of an abnormally large amount of residual austenite (to 50 vol%) in coatings from martensitic steel was 

established. Studies of the resistance to fatigue failure showed that coatings deposited by EAS of wires provide a 

slight decrease in the fatigue strength limit to 10–13% (for comparison, coatings obtained by vibro-arc surfacing 

reduce the fatigue limit by 35–40%). In the course of tribological tests, the wear of sprayed coatings was 

established to be cyclical. The cyclicity of weight wear of sprayed coatings is associated with the degradation of 

their surface layer under friction, described in terms of physical mesomechanics of solids. 
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Лопата О.В., Смирнов І.В., Головащук М.В., Лопата В.М. Дослідження властивостей 

покриттів, отриманих електродуговим напиленням 

 
У роботі запропоновано підвищувати зносостійкість, корозійну стійкість та термін служби 

деталей машин та механізмів при їх зміцненні та реновації ЕДН-покриттями з високою щільністю, 

міцністю зчеплення та мікротвердістю за рахунок активації процесу напилення. У роботі розглянуто 

можливість за рахунок вибору конструктивних параметрів та характеристик обладнання для ЕДН керувати 

властивостями відновлених поверхонь з метою підвищення ресурсу деталей машин. Правильний вибір 

конструкції обладнання для напилення дозволить збільшити швидкість і температуру струменя газу і 

частинок, що транспортуються, зменшити діаметр крапель, підвищити щільність і знизити окислюваність 

покриттів. В роботі досліджено вплив факторів процесу напилення: витрат та тиску робочих газів, складу 

паливної суміші, дистанції напилення, дисперсності розпилення, матеріалу дроту та ін. на властивості 

ЕДН-покриттів. 

 
Ключові слова: покриття, зносостійкість, міцність зчеплення, електродугове напилення. 
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Abstract 

 

For the conjugation of samples and parts of the "shaft-sleeve" type, from the theoretical and experimental 

points of view, the laws of the change of the coefficient of friction for the combined polymer-metal material and 

coating were considered. Based on the law of energy conservation and transformation in the friction zone, 

expressions for estimating friction coefficients for polymer coatings and combined polymer-metal materials were 

obtained, taking into account the properties of thermal conductivity and elasticity and the geometric dimensions 

of the polymer and metal components. The consistency of the patterns of change in the friction coefficient has 

been clarified in tribocouplings of samples and parts from load and sliding speed in modes without lubrication and 

at extreme friction. To substantiate the effective operation of tribocoupling of parts made of combined polymer-

metal materials, a criterion was introduced - the coefficient of wear, which is used to evaluate the tribological 

efficiency. It is shown that the obtained experimental results do not contradict the theoretical justification. 

 

Key words: polymer-metal material, coefficient of friction, load, sliding speed, tribocoupling of samples 

and parts, non-equilibrium state, elasticity, deformation, wear coefficient 

 

Introduction 

 

The use of tribocouplers of samples and parts made of combined polymer-metal materials depends on the 

polymer material, the formation of the metal component, the coating technology, properties and geometric 

characteristics of the polymer and metal components. 

During the operation of tribocoupled parts, the intensity of wear and the coefficient of friction are important. 

designing combined polymer-metal materials and coatings, they try to significantly reduce the intensity of wear 

and optimize the friction coefficient for a specific tribocoupling. There is no criterion by which it is possible to 

evaluate the effective operation of tribocoupling of parts made of combined polymer-metal material and coatings. 

It is important to control the value of the coefficient of friction by varying the geometric dimensions, properties of 

the components of the combined polymer-metal material, operating modes and load-speed characteristics. 

 

Literature review 

 

To effectively increase the durability of machine systems and units, tribo-coupling of parts made of polymer 

and polymer-metal materials is used [1-3]. But at the same time, it is necessary to solve the problem of optimal 

geometric dimensions, technologies for forming stress coatings in materials, intensity of their wear, development 

of methods for evaluating the efficiency and reliability of such tribocouplers [4,5]. 

It should be noted that when implementing such an operational property of materials as their wear 

resistance, the task is complicated due to the significant dependence of stresses on the ratio of constituent polymer-

metallic materials, sizes, shapes of their constituents, as well as structural features of conjugated parts and 

properties of the working (technological) environment [6,7] . 

The authors of works [8-10] the main cause of destructive processes in the surface layers of half-

dimensional materials are contact stresses and deformations that arise under the influence of loads on the tribo-

coupling of parts. This requires a detailed study of the features in the surface layers of the tribojoint materials of 

http://creativecommons.org/licenses/by/3.0/
http://tribology.khnu.km.ua/index.php/ProbTrib
https://doi.org/10.31891/2079-1372-2023-107-1-81-80
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the parts. Studying the features of combined polymer-metal materials in the process of tribocoupling of parts 

allows us to approach unsolved problems from a single point of view. The use of physical and mathematical models 

[11,12] is appropriate. Attempts to compare the wear resistance and stressed and deformed state of the surface 

layers of such coatings on parts were made in [1]. 

The relationship between the wear process of combined polymer-metal materials and their tribological 

properties is given in works [13,14]. The results of studies of wear resistance with polymer and polymer-metal 

coatings show that in the first case it is lower than in the second due to faster equalization of contact pressure. The 

phenomenon of spontaneous establishment and maintenance of a stationary mode of wear was also revealed 

[1,15,16]. 

The existing results of studies of combined polymer-metal materials [17-20] do not allow to evaluate the 

effectiveness of the tribocoupling of parts according to the intensity of wear, and there is a need to relate them to 

the types of contacts and contact conditions. 

 

Purpose  
 

The purpose of this work is to identify the patterns of change in the friction coefficient of tribocouplers of 

parts made of combined polymer-metal materials and with applied polymer and polymer-metal coatings and to 

propose a criterion for their tribological efficiency in operation. 

 

Results 

 

Research results indicate that the heat resistance of the combined polymer-metal coating (PMeC) is higher 

than that of pure polymer (PC). This makes it possible to develop the formation of polymer-metal coatings as a 

technological process to increase the wear resistance and heat resistance of the range of parts that work as sliding 

bearings in machines. 

For polymer materials, there is a fairly clear relationship between friction coefficients and temperature in 

the contact zone: lower temperatures correspond to lower values of the friction coefficient and vice versa. The 

temperature arising as a result of friction changes the elastic and strength properties of the polymer surface layers 

of tribocouples of samples and parts. This affects the change of the actual contact area of the surfaces and the force 

of friction, and therefore the coefficient of friction. 

The temperature change observed in the friction zone is due to more intensive heat removal by combined 

polymer-metal coatings compared to pure polymer ones. 

In the case of a combined polymer-metal coating (fig. 1), its two components should be considered: metal 

with a width a, height – h and polymer – with a width of b . Thermal conductivity of metal material – 3 . The 

thickness of the polymer coating over the metal component is 1 . 

  
а      b 

Fig. 1. Scheme of tribocoupling of parts "shaft-sleeve with polymer (a) and combined polymer-metal (b) coatings: 1 - sleeve;              

2 - shaft; 3 - coating 

 

Heat flows through the components of the combined polymer-metal coating of the cylindrical surface have 

the form: 

– for the polymer component: 
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where  – the coefficient that takes into account part of the heat dissipated through the bushing friction 

surfaces; 

 – the coefficient that takes into account part of the heat dissipated in the triboconjugation of samples and 

parts; 

2 – thermal conductivity of the polymer. 

The flow of heat removed from the friction zone by the combined polymer-metal coating is equal to: 
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We compare the heat flows PQ and MePQ  assuming that 01  h : 
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After some transformations (4) can be represented in the form: 
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Since 32   , then 1
P

MeP

Q

Q
, that is, the process of heat removal is significantly intensified by the 

combined polymer-metal material in comparison with the polymer one. 

An increase in the relative sliding speed of the contacting tribocoupling of parts causes an increase in the 

temperature in the friction zone, which can affect both the mechanical properties of materials and the nature of the 

entire complex of physico-chemical processes. Based on the law of conservation of energy in the mode of steady 

friction, when the surfaces of the contacting parts are worn, the temperature in the contact zone can be calculated 

using the expression: 
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where k – is a coefficient ranging from 0.25 to 0.32; 

       I  – mechanical heat equivalent ( I =43.57 kcal/J); 

       r  – the radius of the contact spot; 

       V  – sliding speed; 

        21,  – thermal conductivity coefficients of contacting bodies; 

        Pf – the coefficient of friction of the polymer surface. 

For a polymer-metal material, expression (6) has the form: 
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where MePf  – the coefficient of friction of the combined polymer-metal surface. 

The expression for determining the step of the metal component in the combined polymer-metal coating is 

obtained using the law of conservation of thermal energy when it is removed through a cylindrical surface: 
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After some transformations of equation (8), we obtain: 
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Assuming that in the first approximation we have: 
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and also taking into account these expressions in equation (9), we have: 
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Having entered the variables 1 in 2 equation (12), we have: 
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where      12111 21 ddhd   .      (14) 

  hd  112 12  .         (15) 

Taking into account the thermophysical characteristics of the material of the sleeve and the materials 

covering the cylindrical surface, as well as the geometric parameters of the parts and the coating, it is possible to 

calculate the technological parameter b of the combined polymer-metal material on the renewable cylindrical 

surface of the part for this tribocoupling of parts. The formation of combined polymer-metal materials on a 

cylindrical surface not only increases the speed of heat removal from the friction zone, but also improves the anti-

friction properties of the mating surfaces. 

From a theoretical point of view, let's consider the change of such an energy characteristic in the 

tribocoupling of "shaft-sleeve" parts as the coefficient of friction. We obtain an expression for the coefficient of 

friction for polymer and polymer-metal materials, based on the law of conservation of energy, taking into account 

the work of friction forces and the process of heat removal from the friction zone. 

For a polymer coating, the work of friction forces can be calculated using the formula: 
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where  – the coefficient that takes into account the nature of the movement of the tribocoupling of parts 

( 9,7 - for rotational movement; 
2

max2,3 d – for oscillating movement);  

1 , 2 , 1E , 2E  – are Poisson's ratios and modulus of elasticity, respectively, of the material of the shaft 

and sleeve. 

Taking into account (16), in the law of energy conservation and transformation, we have: 
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where K –  a coefficient that takes into account the material of the coupling parts and the presence of a 

lubricating medium. 

From the obtained equation (17), it is possible to determine the coefficient of friction for the "shaft-sleeve" 

tribocoupling with a uniform polymer coating of the cylindrical surface of the shaft: 
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For a combined polymer-metal material on a section of a cylinder with a length of bal  , the work of 

friction forces can be calculated by the formula: 
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where 33,E – are the modulus of elasticity and Poisson's ratio of the metal component of the combined 
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polymer-metal material, respectively. 

Using (3) in the law of energy conservation and transformation, we have: 
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From equation (20), it is possible to determine the coefficient of friction for couplings of samples and parts 

made of a combined polymer-metal material: 
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By substituting the mechanical and thermophysical characteristics of the materials of the conjugated parts, 

the coatings applied to them, the geometric dimensions, the components of the combined polymer-metal material, 

as well as the specified characteristics of the coatings into expressions (18) and (21), one can make sure that 

PMeP ff  . This indicates an improvement in the antifriction properties of polymer-metal materials and coatings. 

Triboconjugation of samples and parts may be brought out of equilibrium under the influence of external 

friction conditions, random occurrences of natural inclusions on contacting surfaces, relaxation phenomena in 

combined polymer-metal materials and coatings, development of physico-chemical processes in the area of 

antifriction contact, etc. The process of deviation from the equilibrium state in them is described by the equation: 

  траPаMeMe dLIId  ,     (22) 

where Me  – the excess deformation of the polymer compared to the deformation of the metal; 

       аРаМе II ,  – intensity of metal and polymer wear. 

By integrating the differential equation (22), it can be shown that the tribosystem of the conjugations of 

parts returns to equilibrium, that is, it is stable: 
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where РаМе IІ   – the deviation from the initial value of the difference in intensity of metal and polymer 

wear; 

         МеРМе    – the corresponding deviation of the excess deformation of the polymer. 

Expression (23) shows that as the friction path increases, трL the wear intensities of metal and polymer 

asymptotically converge. The expression is obtained on the assumption that in a fairly small zone the equilibrium 

point РаМе IІ  depends linearly on the amount of deformation of the metal Ме . Disturbing factors, without 

affecting the performance of tribocoupled parts, can lead to a temporary increase in the intensity of wear of the 

coupled surfaces. Due to the optimal choice of parameters a and b , this phenomenon can be minimized. 

One of the indicators of the properties of materials to resist wear in the process of friction is the wear 

coefficient uK , which is equal to: 

тр�k

h
u

LP

u
K  ,       (24) 

where hu  – linear wear; 

          kP  – nominal contact pressure; 

        трL – friction path. 

The wear coefficient links the strength, speed and structural parameters of the couplings of parts taking into 
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account their operation. For coupling parts of the "shaft-sleeve" type, the wear factor has the form: 
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where l  – is the length of the cylindrical surface; 

         1hu  – value of the maximum linear wear of the sleeve; 

         
трL  – friction path; 

        РN  – load reaction; 

          – nominal clearance of the bearing; 

          – half of the contact angle, determined by the expression: 
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where the first term is the constant value of the contact angle, determined by the plastic deformation of the 

materials of the coupling parts, and the second term is the value of the contact angle, which depends on the wear 

of the sleeve and shaft; 

2hu  – value of the maximum linear wear of the shaft. 

Expression (26) for a uniform polymer coating of a shaft with length bal  , takes the form: 
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and for a combined polymer-metal coating: 
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Having experimentally determined on the friction machine the wear values 1hu  and 2hu , and also, 

knowing the dimensions of the conjugated samples and parts and the mechanical parameters of their materials, 

according to the expression (25), taking into account (27) and (28), it is possible to estimate the coefficient of wear 

and draw a conclusion about the expediency of using combined polymer-metal coatings in the restoration of parts 

and their tribological efficiency. 

Experimental studies of the influence of the specific load and sliding speed on the friction coefficient in the 

triboconjugation of samples have shown that the use of polymeric materials in coatings allows to significantly 

increase the antifriction properties of working surfaces. 

Theoretical estimates of the coefficient of friction, carried out according to formulas (18), (21), lead to a 

similar conclusion. The results of experimental and theoretical studies of the coefficient of friction without 

lubrication and in extreme friction modes for different surfaces under the same test conditions are given in table 1. 

The analysis of the data presented in Table 1 shows that the coefficient of friction of PC is 1.2...1.3 times 

lower than that of a purely polymer coating and 1.6...2.1 times lower than the coefficient of friction of cast iron 

and steel without lubrication. 

Table 1  



Problems of Tribology 87 

 

The value of the friction coefficients in the contact zone of triboconjugation of materials (Р=1.0 

MPa, V = 0.5 m/s) according to experimental data and theoretical features 

Surface 

Coefficient of friction, fтр 

Experimental data Theoretical evaluations 

without lubrication marginal friction without lubrication marginal friction 

РС 0.302 0.244 0.280 0.220 

РМеС 0.263 0.197 0.240 0.180 

Cast iron CH18 0.543 0.320 - - 

Steel 45 0.447 0.286 - - 
 

In conditions of friction without lubrication, the value of the coefficient of friction decreases significantly 

due to the formation of polymer films and the increase in their density and thickness. The reduction of the friction 

coefficient in the presence of lubrication is associated with the facilitation of the process of deformation of the 

surface layers of the friction pairs. 

On the basis of the obtained results, it can be noted that RS are distinguished by the specific feature of 

forming films and maintaining their density and thickness in the process of friction. 

Tables 2 and 3 show the change in the coefficient of friction of various surfaces without lubrication and in 

the limit friction mode depending on the specific load. 

Table 2  

Dependence of the coefficient of friction of surfaces without lubrication on the specific load (V = 0.5 m/s) 

Surface 

Coefficient of friction, fтр 

Specific load, MPa 

0.5 1.0 1.5 2.0 

РС 0.350 0.302 0.287 0.254 

РМеС 0.302 0.263 0.243 0.213 

Cast iron CH18 0.497 0.543 0.675 0.720 

Steel 45 0.421 0.447 0.574 0.628 
 

Table 2 

Dependence of the surface friction coefficient at the limit friction on the specific load (V=0.5m/s) 

Поверхня 

Coefficient of friction, fтр 

Specific load, MPa 

0.5 1.0 1.5 2.0 

РС 0.280 0.244 0.183 0.165 

РМеС 0.210 0.197 0.120 0.113 

Cast iron CH18 0.397 0.320 0.201 0.196 

Steel 45 0.354 0.286 0.213 0.174 
 

The analysis of the data in tables 2, 3 shows that with an increase in the specific load, the friction coefficient 

decreases both in the case of friction without lubrication and in the case of marginal friction, which corresponds 

to theoretical estimates within the confidence interval. 

Experimental data were compared with theoretical calculations. According to the calculation data, 

theoretical curves of the dependence of the coefficient of friction on the specific load were constructed for the 

combined polymer-metal and pure polymer coatings, which are presented in fig. 2 and fig. 3. 

 
Fig. 2. Theoretical curves of the dependence of the coefficient of friction of the polymer coating (PC) on the specific load 
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The decrease in the coefficient of friction when the load increases indicates that the contact of the 

conjugated surfaces of the samples and parts in the considered range of loads is characterized by the condition of 

elastic contact. 

 
Fig. 3. Theoretical curves of the dependence of the coefficient of friction of the combined polymer-metal material (PMeC) on the 

specific load 

 

At the limit friction of PMeC with an increase in load, an increase in surface cleanliness is also observed. 

The surface of the bushings working with combined polymer-metal coatings acquired a shiny polished appearance. 

Experimental data on the dependence of the friction coefficients of various surfaces without lubrication and 

with extreme friction on the sliding speed are given in tables 4 and 5. 

Table 4 

Dependence of the friction coefficient on the sliding speed without lubrication at a specific pressure of 

Р=1.0 MPa 

Surface 

Coefficient of friction, fтр 

Sliding speed, m/s 

0.5 1.0 1.5 2.0 

РС 0.28 0.42 0.45 0.37 

РМеС 0.24 0.35 0.39 0.30 

Cast iron CH18 0.54 0.71 0.68 0.62 

Steel 45 0.45 0.67 0.61 0.55 

 

Table 5 

Dependence of the friction coefficient on the sliding speed at the limit of friction at a specific pressure of 

Р=1.0 MPa 

Surface 

Coefficient of friction, fтр 

Sliding speed, m/s 

0.5 1.0 1.5 2.0 

РС 0.22 0.20 0.17 0.15 

РМеС 0.18 0.16 0.13 0.09 

Cast iron CH18 0.32 0.29 0.23 0.21 

Steel 45 0.28 0.25 0.21 0.18 

 

The regularity of the change in friction coefficients from the sliding speed for the combined polymer-metal 

coating under friction conditions without lubrication is illustrated in fig. 4, and at the limit of friction – fig. 5. 

It can be seen that in conditions of friction without lubrication, the coefficient of friction changes in a 

complex way: when the sliding speed increases to 1.5 m/s, it increases, further increasing the sliding speed leads 

to a decrease in the value of the friction coefficient. The dependence of the friction coefficient on the sliding speed 

is, strictly speaking, the dependence of the friction coefficient on the temperature. As the sliding speed increases, 

the temperature on the friction surface increases, as a result of which the physical and mechanical properties of 

materials change, the area of actual contact increases, which is accompanied by an increase in frictional forces 

and, therefore, the friction coefficient. This corresponds to the increasing sections of the curve of the dependence 

of the coefficient of friction for PMeC in conditions of friction without lubrication on the speed of sliding (fig. 4). 
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Fig. 4. Theoretical dependence of the PMeC friction coefficient on the sliding speed during friction without lubrication 

 
Fig. 5. Theoretical dependence of the PMeC friction coefficient on the sliding speed at the limit of friction 

 

If in the zone of low sliding speeds (low temperature) a sufficient protective film does not have time to 

form, then with a further increase in speed (temperature), the intensity of film growth increases, its strength 

decreases, the nature of the film itself changes, and at the same time the shear resistance decreases, which reduces 

coefficient of friction. When the sliding speed increases, the plastic deformation does not have time to spread 

inward and is localized in a smaller volume. These features reduce the friction coefficient after the maximum. 

Therefore, the transition from one type of violation of frictional bonds to another causes a change in the 

coefficient of friction and its transition through a maximum (fig. 4). At the limit of friction (fig. 5), the curve of 

the dependence of the coefficient of friction on the sliding speed has a decreasing character with increasing speed. 

The presence of an oil film on the friction surfaces changes the temperature regime, as well as the value of the 

friction forces due to the reduction of the area of direct contact of the friction surfaces. 

As a result of experimental studies, it was found that combined polymer-metal coatings work better than 

pure polymer coatings. This is confirmed by theoretical justifications. As a result of temperature and deformation 

actions, the friction process of the combined polymer-metal material occurs in the presence of a polymer film with 

low shear resistance in the contact zone. This explains the decrease in the coefficient of friction. Triboconjugation 

of materials in operation, in the presence of a polymer, is accompanied by processes of interaction of mechanical 

destruction products with the metal surface. As a result of these interactions, polymer-metal compounds are 

formed, which also protect the contacting surfaces of tribo-bonding samples and parts from sticking. In addition, 

in the friction zone, the number of wear products between the friction surfaces decreases, as the polymer absorbs 

them from the friction surface, which also affects the reduction of wear intensity and the friction coefficient. 

 

Conclusions  
 

1. The coefficient of friction of PMeC is 1.2...1.3 times less than that of a pure polymer coating and 1.6...2.1 

times less than the coefficients of friction of cast iron and steel without lubrication. 

2. The decrease in the friction coefficient under the conditions of operation without lubrication is explained 

by the formation of polymer films on the surface with an increase in their density and thickness. 

3. A criterion for evaluating the tribological efficiency of the combined polymer-metal material was 
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introduced, taking into account the strength, speed and structural parameters of the coupling of parts, taking into 

account their operating modes 

4. The experimental data of the coefficient of friction obtained in the study agree positively with the 

theoretical calculations. 
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Аулін В.В., Лисенко С.В., Гриньків А.В., Тихий А.А., Кузик О.В., Лівіцький О.М. 
Закономірність зміни коефіцієнта тертя спряження деталей "вал-втулка" з використанням полімерних 

матеріалів 

 

Для спряження зразків і деталей типу "вал-втулка" з теоретичної та експериментальної точок зору 

розглянуто закономірності зміни коефіцієнта тертя для комбінованого полімерометалевого  матеріалу і 

покриття. Виходячи із закону збереження і перетворення енергії в зоні тертя, отримано вирази для оцінки 

коефіцієнтів тертя для полімерних покриттів і комбінованих полімерометалевих матеріалів з урахуванням 

властивостей теплопровідності і пружності та геометричних розмірів полімерної та металевої складових. 

З'ясована узгодженість закономірностей зміни коефіцієнта тертя в трибоспряженнях зразків і деталей від 

навантаження і швидкості ковзання в режимах без змащення і при граничному терті. Для обґрунтування 

ефективної експлуатації трибоспряжень деталей з комбінованих полімерометалевих матеріалів введено 

критерій – коефіцієнт зносу, за яким оцінюють трибологічну ефективність. Показано, що отримані 

експериментальні результати не суперечать теоретичним обґрунтуванням. 

 

Ключові слова: полімерометалевий матеріал, коефіцієнт тертя, навантаження, швидкість 

ковзання, трибоспряження зразків і деталей, нерівноважний стан, пружність, деформація, коефіцієнт зносу 


